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What is reionization?
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The Universe was in a plasma state at very early times (Hot Big Bang)

v

The first hydrogen atoms formed around z ~ 1100: last scattering surface, origin
of the CMBR

The IGM is highly ionized at z < 6. How did this happen?
The sources are probably quasars and/or galaxies? Which one? Anything else?
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Lyman-a forest absorption lines

Q0002—-422

Lya Forest

4000 4500
Wavelength [A]

» The absorption lines blueward of the emission line arise from Ly« transition of
neutral hydrogen (HI) present between the QSO and us.

» The unabsorbed regions correspond to either ionized regions or no matter at all.



Gunn-Peterson effect
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Observed flux ~ Unabsorbed flux x exp (—10°% xgr), where xgr = pui/pH-

The fact that there is non-zero flux implies that

XHI &= 10_5



QSO absorption lines at z ~ 6
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QSO absorption lines at z ~ 6
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Fan et al. (2005)
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» So, even a neutral fraction xir ~ 10~* would produce complete absorption!

» The IGM should not contain too much ionizing radiation at z ~ 6, otherwise one
would end up with xgr < 1074,

» Ly« transition “too strong”, saturates too easily...
From here on, things get model-dependent and messy!!

» Gunn-Peterson optical depth:




CMBR angular power spectrum

» CMBR photons scatter off free electrons.

» The measured quantity in CMBR observations is the optical depth due to
Thomson scattering off free electrons:
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CMBR angular power spectrum
» CMBR photons scatter off free electrons.

» The measured quantity in CMBR observations is the optical depth due to
Thomson scattering off free electrons:

to
TeIZUTC/ dt Ne (1+Z)3
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Probing reionization using CMBR

Current constraints on reionization come from

» polarization signal at large angular scales
(weak signal, can be confused with polarized foregrounds, e.g., WMAP)
» dampening of anisotropies at (almost) all angular scales

(effect is degenerate with amplitude of density power spectrum)

» Planck broke the degeneracy through lensing of the CMBR



Probing reionization using CMBR

Optical depth due to Thomson scattering off free electrons:

z[t]
Tel = OTC dt ne (l—|—z)3
0
Provided by reionization
WMAP Planck (2013) Planck (2015)
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Reionization redshift (assuming instantaneous process) according to Planck (2015)
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Challenges

» Confusing statements while interpreting the data:

— Quasar absorption spectra imply that “redshift of reionization” is z ~ 6. No, they only
imply that xg; > 10~* at z ~ 6!

— CMBR experiments imply that “redshift of reionization” is z ~ 9. But they assume an
instantaneous reionization which is clearly too simplistic!

— There is a tension between quasar and CMBR data. The data only imply that reionization
is an extended process, starting at z 2 9 and completing at z 2 6.

» Challenge is to build a reionization model that matches all the data sets
simultaneously, i.e.,

— reionization should start early enough to give a sufficiently high 7
— reionization must end before z ~ 6
— the model should produce the right number of photons such that xgr > 10™% at z ~ 6
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Reionization models: ingredients
Dark matter haloes M
cooling, fragmentation, feedback, ...
Galaxy + star formation M, = f.M
population synthesis models

Stellar spectra / no of ionizing photons

galaxy observations
clumpiness, outflows, ...

Escape of photons from the galaxy fosc

propagation of ionization fronts

Radiative transfer through the intergalactic medium



Growth of ionized regions

Number of photons produced per unit volume

ionization of neutral regions

ionizing HI in already ionized regions

Photoionization equilibrium within ionized regions:

nut T = ag (C ngy) a3

clumping factor: C = (n%,)/(nn)?.

dQunmn  n _
=—L - QunCagnya
dt nH

3




Photon production

Photon production rate:
=
ny o
Number of ionizing photons in the IGM per baryons

Collapse rate of dark matter haloes

Q
Nion = €4 fose X number of photons per baryons in stars x <Qb>
m



The relevant equations

The master equation:

dQpmr dfcon _3
— WNjon —;7— — C
i T Qun C ag np a

CMBR optical depth

ZLss 3
Tel =COT I’IH/ dt QHH(t) a
0



Dependence on parameters
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Constraints from 7, (and quasar spectra)
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Allowed reionization histories
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Example of a detailed semi-analytical model

Choudhury & Ferrara (2005,2006)

>

Standard FRW paradigm with ACDM model — hierarchical structure formation dominated by
dark matter

Evolution of volume filling factor of ionized regions, supplemented by temperature and species
evolution equations

More sophisticated treatment: incorporate the fact that high density regions remain neutral for
longer time (Lyman-limit systems)
Miralda-Escude, Haehnelt & Rees (2000)

Follow ionization and thermal histories of neutral, HIl and Helll regions simultaneously.

Two sources of ionizing radiation:

1. Stars: modelled as ny = Nion(z) dfeon/dt
2. Quasars: significant at z < 6, model based on observed luminosity function
(no free parameters)

Only atomically cooled haloes, no molecular cooling

Radiative feedback suppressing star formation in low-mass haloes



Data constrained models

Mitra, Choudhury & Ferrara (2015)
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Constraints based on Planck data + quasar absorption line measurements at z ~ 6
reionization starts at z ~ 12



Other probes of reionization

» Galaxy luminosity function: uncertain escape fraction

» Quasar absorption spectra (damping wings/near zones): only a few quasars
known till date

» Lyman-a emitters (number density and clustering) systematics, model dependent
constraints
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An “ideal” experiment

» CMBR probes the “integrated” reionization history. Require a line transition so
that observations can be done in different redshifts.

» Lya is a line transition, but too “strong” = lines become saturated for
XHI Z 10~* (i.e., z > 6)
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» Need a line transition which is “weak”



Redshifted 21 cm experiments

» 21 cm (1420 MHz) radiation: arises from the transition between the two
hyperfine levels of the hydrogen 1s ground state, slightly split by the interaction
between the electron spin and the nuclear spin.

Hydrogen hyperfine Nuclear Electron
structure spin spin
_— 4
1s 6
., 15.9 x10 eV
% ) 4
1420 MHz
h=21cm

Line transition = a transition originating at z will be observed at a frequency
Vobs = 1420/(1 + z) MHz.

» The higher energy level (with parallel spins) has a total spin 1, and hence g» = 3.
Similarly, g = 1.

» The 2 — 1 transition is a magnetic dipole transition, with transition probability
Az = 2.85 x 1071 s71 = an atom in the upper level is expected to make a
downward transition once in 107 yr. Impossible to observe in laboratory
conditions.

For Lya transition, the corresponding coefficient is Ay = 6 x 108 s—1.



21 cm experiments: a new window to cosmology

» At z 2 20, HI traces the exact distribution of matter (dark ages). At z > 8,
probes reionization and nature of first stars. At z < 6, probes high-density
regions (just like galaxy surveys), potential probe of matter power spectrum.

» Possible to probe the distribution in 3-D (in contrast to CMBR which is 2-D).

» CMBR: multipoles probed 1 < ¢ < 2000; scales smaller than k ~ 0.1 Mpc~!

cannot be probed because of diffusion effects (Silk damping).

» 21 cm: power on all scales. Possible to probe scales as small as k ~ 100 Mpc~!.

» Also possible to probe at different z “shells”. AP(k) ~ 107% — 10 at ~ 0.05
Mpc.

» Challenge: ionosphere, terrestrial radio (v ~ 70 MHz), large galactic foregrounds,
extragalactic point sources, ....

» Experiments: GMRT (India), MWA (Australia), LOFAR (Netherlands + Europe),
SKA, ...



Global 21 cm signature
» 21cm radiation from HI observed against the backdrop of CMBR
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Pritchard & Loeb (2012)

» In most models, the neutral hydrogen will be observed in emission from z ~ 15
until reionization is completed. T, couples to Ty via Lya pumping, and
Tk > Tcup in the neutral regions mainly because of X-ray heating etc.



Modelling the 21cm signal

Two possible approaches:

» Statistical: Calculate quantities like power spectrum, correlation function etc
Choudhury, Haehnelt & Regan (2009)

02 04 06

» Individual sources: Look towards ionized regions around sources
Majumdar, Bharadwaj & Choudhury (2012)

0O 20 40 60 80



21 cm intensity maps
Ghara, Choudhury & Datta (2014)
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z ~ 15 (v ~ 90 MHz), xgrp ~ 1073
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z ~ 8 (v ~ 160 MHz), xgi1 ~ 0.56
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Low frequency instruments
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Future telescopes

SKA-LOW HERA
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21 cm power spectra
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Summary

» Reionization probes the first stars.
» Possible to develop models which are consistent with all available data.

» Hope to probe reionization history at z > 6 using the redshifted 21 cm signal.



