Cosmic Reionization

Tirthankar Roy Choudhury National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune

From Re-ionization to large-scale structure: A multiwavelength approach IUCAA, Pune 12 February 2018

Plan of the talk

- Introduction to reionization
- Observational constraints
- Modelling reionization
- ► Future scopes

► The Universe was in a plasma state at very early times (Hot Big Bang)

- ► The Universe was in a plasma state at very early times (Hot Big Bang)
- \blacktriangleright The first hydrogen atoms formed around $z\sim$ 1100: last scattering surface, origin of the CMBR

- ► The Universe was in a plasma state at very early times (Hot Big Bang)
- \blacktriangleright The first hydrogen atoms formed around $z\sim$ 1100: last scattering surface, origin of the CMBR
- The IGM is highly ionized at $z \lesssim 6$. How did this happen?

- ► The Universe was in a plasma state at very early times (Hot Big Bang)
- \blacktriangleright The first hydrogen atoms formed around z \sim 1100: last scattering surface, origin of the CMBR
- The IGM is highly ionized at $z \leq 6$. How did this happen?
- ► The sources are probably quasars and/or galaxies? Which one? Anything else?

Last scattering epoch First hydrogen atoms form

Dark ages

First stars form

Reionization

Post-reionization

Absorption signatures Quasar at z > 0time z = 0

Absorption signatures

Lyman- α forest absorption lines

- The absorption lines blueward of the emission line arise from Lyα transition of neutral hydrogen (HI) present between the QSO and us.
- ► The unabsorbed regions correspond to either ionized regions or no matter at all.

Gunn-Peterson effect

Observed flux ~ Unabsorbed flux × exp $(-10^5 x_{\rm HI})$, where $x_{\rm HI} = \rho_{\rm HI}/\rho_H$. The fact that there is non-zero flux implies that

 $x_{\rm HI} \simeq 10^{-5}$

QSO absorption lines at $z \sim 6$

QSO absorption lines at $z \sim 6$

$$x_{
m HI} \lesssim 10^{-5}$$

Does this absorption mean high neutrality?

QSO absorption lines at $z \sim 6$

Fan et al. (2005)

► Gunn-Peterson optical depth:

$$au_{\rm GP} pprox \left(rac{ar{x}_{\rm HI}}{10^{-5}}
ight)$$

- ► So, even a neutral fraction $x_{\rm HI} \approx 10^{-4}$ would produce **complete absorption**!
- ► The IGM should not contain too much ionizing radiation at z ≈ 6, otherwise one would end up with x_{HI} < 10⁻⁴.
- Lyα transition "too strong", saturates too easily...
 From here on, things get model-dependent and messy!!

CMBR angular power spectrum

- CMBR photons scatter off free electrons.
- The measured quantity in CMBR observations is the optical depth due to Thomson scattering off free electrons:

CMBR angular power spectrum

- CMBR photons scatter off free electrons.
- The measured quantity in CMBR observations is the optical depth due to Thomson scattering off free electrons:

CMBR angular power spectrum

- CMBR photons scatter off free electrons.
- The measured quantity in CMBR observations is the optical depth due to Thomson scattering off free electrons:

Current constraints on reionization come from

 polarization signal at large angular scales (weak signal, can be confused with polarized foregrounds, e.g., WMAP)

Current constraints on reionization come from

- polarization signal at large angular scales (weak signal, can be confused with polarized foregrounds, e.g., WMAP)
- dampening of anisotropies at (almost) all angular scales (effect is degenerate with amplitude of density power spectrum)

Current constraints on reionization come from

- polarization signal at large angular scales (weak signal, can be confused with polarized foregrounds, e.g., WMAP)
- dampening of anisotropies at (almost) all angular scales (effect is degenerate with amplitude of density power spectrum)
- Planck broke the degeneracy through lensing of the CMBR

Optical depth due to Thomson scattering off free electrons:

Reionization redshift (assuming instantaneous process) according to Planck (2015) $z\sim9$

• Confusing statements while interpreting the data:

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6!$

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6!$
 - CMBR experiments imply that "redshift of reionization" is $z \sim 9$. But they assume an instantaneous reionization which is clearly too simplistic!

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6!$
 - CMBR experiments imply that "redshift of reionization" is $z \sim 9$. But they assume an instantaneous reionization which is clearly too simplistic!
 - There is a tension between quasar and CMBR data. The data only imply that reionization is an extended process, starting at $z \gtrsim 9$ and completing at $z \gtrsim 6$.

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6!$
 - CMBR experiments imply that "redshift of reionization" is $z \sim 9$. But they assume an instantaneous reionization which is clearly too simplistic!
 - There is a tension between quasar and CMBR data. The data only imply that reionization is an extended process, starting at $z \gtrsim 9$ and completing at $z \gtrsim 6$.
- Challenge is to build a reionization model that matches all the data sets simultaneously, i.e.,

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6!$
 - CMBR experiments imply that "redshift of reionization" is $z \sim 9$. But they assume an instantaneous reionization which is clearly too simplistic!
 - There is a tension between quasar and CMBR data. The data only imply that reionization is an extended process, starting at $z \gtrsim 9$ and completing at $z \gtrsim 6$.
- Challenge is to build a reionization model that matches all the data sets simultaneously, i.e.,
 - reionization should start early enough to give a sufficiently high $\tau_{\rm el}$

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6!$
 - CMBR experiments imply that "redshift of reionization" is $z \sim 9$. But they assume an instantaneous reionization which is clearly too simplistic!
 - There is a tension between quasar and CMBR data. The data only imply that reionization is an extended process, starting at $z \gtrsim 9$ and completing at $z \gtrsim 6$.
- Challenge is to build a reionization model that matches all the data sets simultaneously, i.e.,
 - reionization should start early enough to give a sufficiently high $\tau_{\rm el}$
 - reionization must end before $z\sim 6$

- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z\sim 6$. No, they only imply that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6!$
 - CMBR experiments imply that "redshift of reionization" is $z \sim 9$. But they assume an instantaneous reionization which is clearly too simplistic!
 - There is a tension between quasar and CMBR data. The data only imply that reionization is an extended process, starting at $z \gtrsim 9$ and completing at $z \gtrsim 6$.
- Challenge is to build a reionization model that matches all the data sets simultaneously, i.e.,
 - reionization should start early enough to give a sufficiently high $\tau_{\rm el}$
 - reionization must end before $z\sim 6$
 - the model should produce the right number of photons such that $x_{\rm HI}\gtrsim 10^{-4}$ at $z\sim 6$

Dark matter haloes M

Radiative transfer through the intergalactic medium

Growth of ionized regions

Number of photons produced per unit volume

Photoionization equilibrium within ionized regions:

$$n_{\rm HI} \ \Gamma_{\rm HI} = \alpha_B \ \left(\mathcal{C} \ n_H^2 \right) \ a^{-3}$$

clumping factor: $C = \langle n_H^2 \rangle / \langle n_H \rangle^2$.

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{\dot{n}_{\gamma}}{n_{H}} - Q_{\mathrm{HII}} \ \mathcal{C} \ \alpha_{B} \ n_{H} \ a^{-3}$$

Photon production

Photon production rate:

$$N_{
m ion} = \epsilon_* \, f_{
m esc} \, imes \,$$
 number of photons per baryons in stars $imes \left(rac{\Omega_b}{\Omega_m}
ight)$

The relevant equations

The master equation:

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = N_{\mathrm{ion}} \, \frac{\mathrm{d}f_{\mathrm{coll}}}{\mathrm{d}t} - Q_{\mathrm{HII}} \, \mathcal{C} \, \alpha_{\mathcal{B}} \, n_{\mathcal{H}} \, a^{-3}$$

CMBR optical depth

$$au_{
m el} = c \ \sigma_T \ n_H \int_0^{z_{
m LSS}} {
m d}t \ Q_{
m HII}(t) \ a^{-3}$$

Dependence on parameters

$$M_{\rm min} = 10^8 h^{-1} M_{\odot}$$

Constraints from $au_{ m el}$ (and quasar spectra)

Allowed reionization histories

remember that $\textit{N}_{\rm ion}$ and $\mathcal C$ are constants

Choudhury & Ferrara (2005,2006)

Standard FRW paradigm with ACDM model – hierarchical structure formation dominated by dark matter

- Standard FRW paradigm with ACDM model hierarchical structure formation dominated by dark matter
- Evolution of volume filling factor of ionized regions, supplemented by temperature and species evolution equations

- Standard FRW paradigm with ACDM model hierarchical structure formation dominated by dark matter
- Evolution of volume filling factor of ionized regions, supplemented by temperature and species evolution equations
- More sophisticated treatment: incorporate the fact that high density regions remain neutral for longer time (Lyman-limit systems)
 Miralda-Escude, Haehnelt & Rees (2000)

- Standard FRW paradigm with ACDM model hierarchical structure formation dominated by dark matter
- Evolution of volume filling factor of ionized regions, supplemented by temperature and species evolution equations
- More sophisticated treatment: incorporate the fact that high density regions remain neutral for longer time (Lyman-limit systems)
 Miralda-Escude, Haehnelt & Rees (2000)
- ► Follow ionization and thermal histories of neutral, HII and HeIII regions simultaneously.

- Standard FRW paradigm with ACDM model hierarchical structure formation dominated by dark matter
- Evolution of volume filling factor of ionized regions, supplemented by temperature and species evolution equations
- More sophisticated treatment: incorporate the fact that high density regions remain neutral for longer time (Lyman-limit systems)
 Miralda-Escude, Haehnelt & Rees (2000)
- ▶ Follow ionization and thermal histories of neutral, HII and HeIII regions simultaneously.
- Two sources of ionizing radiation:

- Standard FRW paradigm with ACDM model hierarchical structure formation dominated by dark matter
- Evolution of volume filling factor of ionized regions, supplemented by temperature and species evolution equations
- More sophisticated treatment: incorporate the fact that high density regions remain neutral for longer time (Lyman-limit systems)
 Miralda-Escude, Haehnelt & Rees (2000)
- ▶ Follow ionization and thermal histories of neutral, HII and HeIII regions simultaneously.
- Two sources of ionizing radiation:
 - 1. Stars: modelled as $\dot{n}_{\gamma} = N_{\rm ion}(z) \, {\rm d}f_{\rm coll}/{\rm d}t$

- Standard FRW paradigm with ACDM model hierarchical structure formation dominated by dark matter
- Evolution of volume filling factor of ionized regions, supplemented by temperature and species evolution equations
- More sophisticated treatment: incorporate the fact that high density regions remain neutral for longer time (Lyman-limit systems)
 Miralda-Escude, Haehnelt & Rees (2000)
- ▶ Follow ionization and thermal histories of neutral, HII and HeIII regions simultaneously.
- Two sources of ionizing radiation:
 - 1. Stars: modelled as $\dot{n}_{\gamma} = N_{\rm ion}(z) \, {\rm d}f_{\rm coll}/{\rm d}t$
 - 2. Quasars: significant at $z \lesssim 6$, model based on observed luminosity function (no free parameters)

- Standard FRW paradigm with ACDM model hierarchical structure formation dominated by dark matter
- Evolution of volume filling factor of ionized regions, supplemented by temperature and species evolution equations
- More sophisticated treatment: incorporate the fact that high density regions remain neutral for longer time (Lyman-limit systems)
 Miralda-Escude, Haehnelt & Rees (2000)
- ► Follow ionization and thermal histories of neutral, HII and HeIII regions simultaneously.
- Two sources of ionizing radiation:
 - 1. Stars: modelled as $\dot{n}_{\gamma} = N_{\rm ion}(z) \, {\rm d}f_{\rm coll}/{\rm d}t$
 - 2. Quasars: significant at $z \lesssim 6$, model based on observed luminosity function (no free parameters)
- Only atomically cooled haloes, no molecular cooling

- Standard FRW paradigm with ACDM model hierarchical structure formation dominated by dark matter
- Evolution of volume filling factor of ionized regions, supplemented by temperature and species evolution equations
- More sophisticated treatment: incorporate the fact that high density regions remain neutral for longer time (Lyman-limit systems)
 Miralda-Escude, Haehnelt & Rees (2000)
- ► Follow ionization and thermal histories of neutral, HII and HeIII regions simultaneously.
- Two sources of ionizing radiation:
 - 1. Stars: modelled as $\dot{n}_{\gamma} = N_{\rm ion}(z) \, {\rm d}f_{\rm coll}/{\rm d}t$
 - 2. Quasars: significant at $z \lesssim 6$, model based on observed luminosity function (no free parameters)
- Only atomically cooled haloes, no molecular cooling
- Radiative feedback suppressing star formation in low-mass haloes

Data constrained models

Mitra, Choudhury & Ferrara (2015)

Constraints based on Planck data + quasar absorption line measurements at $z\sim 6$ reionization starts at $z\sim 12$

Other probes of reionization

- ► Galaxy luminosity function: uncertain escape fraction
- Quasar absorption spectra (damping wings/near zones): only a few quasars known till date
- ► Lyman- α emitters (number density and clustering) systematics, model dependent constraints

An "ideal" experiment

 CMBR probes the "integrated" reionization history. Require a line transition so that observations can be done in different redshifts.

An "ideal" experiment

- CMBR probes the "integrated" reionization history. Require a line transition so that observations can be done in different redshifts.
- ► Ly α is a line transition, but too "strong" \implies lines become saturated for $x_{\rm HI} \gtrsim 10^{-4}$ (i.e., z > 6).

An "ideal" experiment

- CMBR probes the "integrated" reionization history. Require a line transition so that observations can be done in different redshifts.
- ► Ly α is a line transition, but too "strong" \implies lines become saturated for $x_{\rm HI} \gtrsim 10^{-4}$ (i.e., z > 6).

▶ Need a line transition which is "weak"

Redshifted 21 cm experiments

► 21 cm (1420 MHz) radiation: arises from the transition between the two hyperfine levels of the hydrogen 1s ground state, slightly split by the interaction between the electron spin and the nuclear spin.

Line transition \implies a transition originating at z will be observed at a frequency $\nu_{\rm obs} = 1420/(1+z)$ MHz.

- ▶ The higher energy level (with parallel spins) has a total spin 1, and hence $g_2 = 3$. Similarly, $g_1 = 1$.
- ▶ The 2 → 1 transition is a magnetic dipole transition, with transition probability $A_{21} = 2.85 \times 10^{-15} \text{ s}^{-1} \implies$ an atom in the upper level is expected to make a downward transition once in 10^7 yr. Impossible to observe in laboratory conditions.

For Ly α transition, the corresponding coefficient is $A_{21} \approx 6 \times 10^8 \text{ s}^{-1}$.

21 cm experiments: a new window to cosmology

- At z ≥ 20, HI traces the exact distribution of matter (dark ages). At z > 8, probes reionization and nature of first stars. At z ≤ 6, probes high-density regions (just like galaxy surveys), potential probe of matter power spectrum.
- ▶ Possible to probe the distribution in 3-D (in contrast to CMBR which is 2-D).
- ► CMBR: multipoles probed 1 < ℓ ≤ 2000; scales smaller than k ~ 0.1 Mpc⁻¹ cannot be probed because of diffusion effects (Silk damping).
- ▶ 21 cm: power on all scales. Possible to probe scales as small as $k \sim 100 \text{ Mpc}^{-1}$.
- ► Also possible to probe at different z "shells". ΔP(k) ~ 10⁻⁵ 10⁻⁶ at ~ 0.05 Mpc.
- ► Challenge: ionosphere, terrestrial radio ($\nu \sim 70$ MHz), large galactic foregrounds, extragalactic point sources,
- Experiments: GMRT (India), MWA (Australia), LOFAR (Netherlands + Europe), SKA, ...

Global 21 cm signature

► 21cm radiation from HI observed against the backdrop of CMBR

$$\delta T_b \propto \frac{T_s - T_{\rm CMB}(z)}{T_s} n_{\rm HI}$$

The spin temperature

Pritchard & Loeb (2012)

► In most models, the neutral hydrogen will be **observed in emission** from $z \approx 15$ until reionization is completed. T_s couples to T_k via Ly α pumping, and $T_k \gg T_{\rm CMB}$ in the neutral regions mainly because of X-ray heating etc.

Modelling the 21cm signal

Two possible approaches:

 Statistical: Calculate quantities like power spectrum, correlation function etc Choudhury, Haehnelt & Regan (2009)

 Individual sources: Look towards ionized regions around sources Majumdar, Bharadwaj & Choudhury (2012)

21 cm intensity maps

Ghara, Choudhury & Datta (2014)

Low frequency instruments

Future telescopes

SKA-LOW

HERA

21 cm power spectra

Kulkarni, Choudhury, Puchwein & Haehnelt (2016)

Summary

- Reionization probes the first stars.
- ▶ Possible to develop models which are consistent with all available data.
- Hope to probe reionization history at z > 6 using the redshifted 21 cm signal.