Galaxy formation in a <u>ACDM Universe</u> The semi-analytic approach

Thibault Garel

Centre de Recherche Astrophysique de Lyon (CRAL)

INTRE DE RECHERCHE ASTROPHYSIQUE DE LYON

Wide diversity of properties (sizes, morphologies, structure, colours, etc) in the galaxy population

Galaxy formation is a complex process involving many physical mechanisms at once

Pune, February 2018

The semi-analytic technique is a way to (try to) model in a single framework all the physics that are relevant for galaxy formation within ΛCDM

=> **Hybrid approach** : Baryonic physics that govern galaxy formation are modelled "semi-analytically" as a post-processing step of DM cosmological simulations

The skeleton

slide by D. Croton

How do you go from this to that ?

Baryonic physics modelled from :

- First principles
- Physically-motivated prescriptions (e.g. from hydro simulations)
- Empirical laws from observations

Large samples of virtual galaxies in cosmological volumes

Test/adjust the models by comparing with fundamental constraints from observations

Pioneering ideas

Gas cooling regulates the galaxy mass that can form in a given DM halo

(Silk77, Binney77, Rees & Ostriker77)

Star formation needs to be regulated

(Silk&Dekel86, White & Frenk91, Efstathiou92, Thoul & Weinberg95, Binney & Tabor 95)

Galaxy formation as a two-step process (White & Rees 1978)

 Disc formation due to angular momentum conservation (Fall & Efstathiou 1980, Mo et al. 1998)

Disc instabilities and mergers
 => bars / stellar bulges

 (Efstathiou 1982, Barnes 1988)

First SAMs in the early 90s (White & Frenk 1991; Lacey & Silk 1991;

Kauffmann, White & Guiderdoni 1993; Cole et al. 1994, Somerville & Primack 1999 etc)

- Cosmological simulations of dark matter
- Physics of galaxy formation in semi-analytic models
- High-redshift galaxies in GALICS
- How to generate mock observables from SAMs

OUTLINE

+ Cosmological simulations of dark matter

- Physics of galaxy formation in semi-analytic models
- High-redshift galaxies in GALICS
- How to generate mock observables from SAMs

DARK MATTER SKELETON

To model galaxy formation in a ACDM Universe using the SA technique, we first need to describe the hierarchical growth of DM haloes:

- (i) the **abundance** (i.e. the *halo mass function*) of DM halos at a given time,
- (ii) their formation histories (i.e. the merger trees),
- (iii) the **physical properties** of each individual halo.

Press-Schechter formalism (and its variants)

Halo abundances estimated analytically. Merger trees generated with a Monte-Carlo approach by sampling the distribution of progenitors using PS theory.

Cosmological N-body simulations of DM

=> information on the spatial distribution and dynamics of haloes
=> more accurate than PS formalisms (e.g. Governato et al. 1999; Jenkins et al. 2001)

T. Garel

Cosmological N-body simulations

- DM "particles" used to sample the 3D density field in a representative volume (a box) of Universe
- Initial conditions set by cosmology
- Follow the dynamical evolution of collisionless DM particles (gravitational interactions only)

$$M_{\rm p} = \frac{\rho_0 V_{\rm b}}{N_{\rm p}}$$

$$\rho_0 = 2.7755 \times 10^{11} \Omega_{\rm m} h^2 M_{\odot}. {\rm Mpc}^{-3}$$

Cosmological N-body simulations

- DM "particles" used to sample the 3D density field in a representative volume (a box) of Universe
- Initial conditions set by cosmology
- Follow the dynamical evolution of collisionless DM particles (gravitational interactions only)

$$M_{\rm p} = \frac{\rho_0 V_{\rm b}}{N_{\rm p}}$$

$$\rho_0 = 2.7755 \times 10^{11} \Omega_{\rm m} h^2 M_{\odot} . Mpc^{-3}$$

Pune, February 2018

Cosmological N-body simulations

Cosmological simulations need to span a wide dynamic range.

Small particle mass

=> resolve low-mass haloes (*min(M_{halo})* = 20-100 x M_p) & internal structure

Large volume

include density fluctuations
on large scales
> enough statistics to get
representative sample of haloes
and rare (i.e. massive) objects in
particular

HALO IDENTIFICATION

Several methods to identify DM halos:

- Friends-Of-Friends (FOF; Davies et al. 1985) algorithms link together all particles separated by less than a characteristic distance (the *linking length*)
- Another way is to use an overdensity threshold to identify density peaks, the i.e. haloes (e.g. Bertschinger & Gelb 1991)

Physical properties

Keep particles that are gravitationally bound => virial mass M_{vir}

R_{vir} is the radius of the spherical overdensity of mass M_{vir}

$$\Delta \rho = \frac{3M_{\rm vir}}{4\pi R_{\rm vir}^3}$$

"Spin" parameter
$$\lambda = \frac{|E|^{1/2}}{GM_{\rm vir}^{5/2}}$$

HMF for different cosmologies

	h100	Ω_{Λ}	$\Omega_{ m m}$	σ8	n
Millennium	0.73	0.75	0.25	0.90	1.0
Bolshoi	0.70	0.73	0.27	0.82	0.95
Bolshoi Pl.	0.68	0.69	0.31	0.82	0.96

HMF for different cosmologies

	h100	Ω_{Λ}	$\Omega_{ m m}$	σ8	n
Millennium	0.73	0.75	0.25	0.90	1.0
Bolshoi	0.70	0.73	0.27	0.82	0.95
Bolshoi Pl.	0.68	0.69	0.31	0.82	0.96

HMF for different cosmologies

	h100	Ω_{Λ}	$\Omega_{ m m}$	σ8	n
Millennium	0.73	0.75	0.25	0.90	1.0
Bolshoi	0.70	0.73	0.27	0.82	0.95
Bolshoi Pl.	0.68	0.69	0.31	0.82	0.96

HMF for different cosmologies

	h100	Ω_{Λ}	$\Omega_{ m m}$	σ8	n
Millennium	0.73	0.75	0.25	0.90	1.0
Bolshoi	0.70	0.73	0.27	0.82	0.95
Bolshoi Pl.	0.68	0.69	0.31	0.82	0.96

HMF for different cosmologies

	h100	Ω_{Λ}	$\Omega_{ m m}$	σ8	n
Millennium	0.73	0.75	0.25	0.90	1.0
Bolshoi	0.70	0.73	0.27	0.82	0.95
Bolshoi Pl.	0.68	0.69	0.31	0.82	0.96

HMF for different cosmologies

	h100	Ω_Λ	$\Omega_{ m m}$	σ8	n
Millennium	0.73	0.75	0.25	0.90	1.
Bolshoi	0.70	0.73	0.27	0.82	0.9
Bolshoi Pl.	0.68	0.69	0.31	0.82	0.9

HALO MERGER TREES

Record the halo growth (mergers & diffuse accretion)

Link the haloes between snapshots

- Identify progenitors in earlier snaphots • & descendants in later snapshots
- Different methods to track progenitors • & descendants (see Lee+14)
- Usually, a halo can have many • progenitors but only one descendant

z=0

All the DM information needed by SAMs is encoded in the merger trees

HALO MERGER TREES

Record the halo growth (mergers & diffuse accretion)

Link the haloes between snapshots

- Identify progenitors in earlier snaphots
 & descendants in later snapshots
- Different methods to track progenitors
 & descendants (see Lee+14)
- Usually, a halo can have many progenitors but only one descendant

All the DM information needed by SAMs is encoded in the merger trees

The skeleton

The flesh

- Cosmological simulations of dark matter
- + Physics of galaxy formation in semi-analytic models
- High-redshift galaxies in GALICS
- How to generate mock observables from SAMs

Schematic view of semi-analytic galaxies

Baryonic cycle described by a set of differential equations

(solved numerically over substeps between each snapshot)

Baryonic content of a halo divided in several components/reservoirs:

 $dM_{\rm DM}$

dt

- Hot gas halo
- Cold gas disc
- Stellar disc
- Stellar bulge
- Intra-cluster stars etc

Gas accretion onto the halo = f_{baryon}

$$\begin{split} \psi &= star \, formation \, rate \, (SFR) \\ \dot{M}_{cold} &= \dot{M}_{cool} - (1 - R + \beta)\psi \\ \dot{M}_{hot} &= -\dot{M}_{cool} + \beta\psi \\ \dot{M}_{\star}^{Z} &= (1 - R)Z_{cold}\psi \\ \dot{M}_{\star}^{Z} &= \dot{M}_{cool}Z_{hot} \\ &+ (p \, (1 - e) - (1 + \beta - R)Z_{cold})\psi \\ \dot{M}_{hot}^{Z} &= -\dot{M}_{cool}Z_{hot} + (p \, e + \beta Z_{cold})\psi. \end{split}$$

POPULAR SEMI-ANALYTIC MODELS

POPULAR SEMI-ANALYTIC MODELS

GAS COOLING (in SAGE)

Gas infalling into the halo is heated by shocks and settles into an isothermal sphere in hydrostatic equilibrium

$$\rho_{\rm g}(r) = \frac{m_{\rm hot}}{4\pi R_{\rm vir}r^2}$$

Hot gas (excited state) => radiative cooling (de-excitation + photon emission) => pressure support drops => gas sinks to the center

Cooling time

$$t_{\rm cool} = \frac{3}{2} \frac{\bar{\mu}m_{\rm p}kT}{\rho_{\rm g}(r)\Lambda(T,Z)}$$

tcool < tdyn : rapid cooling

tcool > tdyn : less efficient cooling

$$\dot{m}_{\rm cool} = \frac{1}{2} \left(\frac{r_{\rm cool}}{R_{\rm vir}} \right) \left(\frac{m_{\rm hot}}{t_{\rm cool}} \right)$$

T. Garel

GAS COOLING (in GALICS)

T. Garel

SAGE

Convert cold gas in disk into stars over t_{dyn,disk}

$$\dot{m}_* = \alpha_{\rm SF} \, \frac{(m_{\rm cold} - m_{\rm crit})}{t_{\rm dyn, disk}}$$

- Consider only unstable gas (above critical mass)

- Inefficient process (usually
$$\alpha_{SF} \sim$$
 1-10%)

GALICS Empirical SF law (Kennicutt) $\Sigma_{CEP} = \epsilon \Sigma^{1.4}$

$$\Sigma_{\rm SFR} = \epsilon \Sigma_{\rm cold}^{1.4}$$

 $\epsilon = \alpha_{\rm SF} / \alpha_{\rm SF,Kennicutt}$

Here, the SFR is an integrated property as the prescriptions are applied to the full disk.

 $\Sigma_{\text{SFR}} \sim f_{\text{H2}} \sum_{\text{cold}} (M_{\text{cold}} = M_{\text{HI}} + M_{\text{H2}})$

+ Empirical law by Blitz & Rosolowski

H2 cloud formation set by external pressure on disks

$$\frac{\Sigma(\mathrm{H}_2)}{\Sigma(\mathrm{HI})} = \left(\frac{P_{\mathrm{ext}}}{P_0}\right)^{\alpha}$$

+ Theoretical law by Krumholz & McKee

H₂ formation is function of gas metallicity Z : $f_{\rm H_2} \sim \Sigma/(\Sigma + 10Z_0^{-1}M_{\odot} {\rm \ pc}^{-2})$

=> Very popular recipes : GALFORM, SAGE, L-GALAXIES, Santa Cruz etc (predictions for HI and H₂ forthcoming surveys)

=> Very popular recipes : GALFORM, SAGE, L-GALAXIES, Santa Cruz etc (predictions for HI and H₂ forthcoming surveys)

SUPERNOVA FEEDBACK

Shallow slope at low-mass end of SMF

=> need feedback mechanism to remove gas from low-mass galaxies

e.g. young stars exploding as supernovae can release lots of mechanical and radiative energy

From E conservation:
$$\dot{M}_{out} = \frac{2 \epsilon_{SN} E_{SN} \Psi_{SN} SFR}{v_{esc}^2}$$
, $v_{esc}^2 \sim M_{gal}$
Silk 2003

Many different modellings, e.g. in momentum-conserving winds, $\dot{M}_{out} \sim 1 / v_{esc}$

SUPERNOVA FEEDBACK

After reionisation, UV background can heat pre-galactic gas

=> No gas condensation in halos if $E_{therm} > |E_{grav}|$: efficient at low M_{halo} !

Prescriptions often used in SAM estimated from hydro. simulations

e.g. Okamoto+08 , Kravstov+, Ocvirk+15

$$f_{\rm b}(z, M_{\rm vir}) = f_{\rm b}^{\rm cos} \left(1 + \left(2^{\alpha/3} - 1\right) \left[\frac{M_{\rm vir}}{M_{\rm F}(z)}\right]^{-\alpha}\right)^{-3/\alpha}$$

AGN FEEDBACK

"Feedback" from AGN related to black hole

growth and activity (Kauffmann & Haehnelt 2000, Croton+06, Bower+06, Cattaneo+06 etc)

Energy injection (e.g. radio jets) in the surrounding gas can suppress the cooling flows

$$\dot{m}_{\rm cool}' = \dot{m}_{\rm cool} - \frac{L_{\rm BH}}{\frac{1}{2}V_{\rm vir}^2}$$

Only effective if tcool > tdyn (i.e. massive haloes)

AGN feedback does not require SF to be activated (unlike SN feedback)

AGN FEEDBACK

AGN feedback does not require SF to be activated (unlike SN feedback)

T. Garel

- Cosmological simulations of dark matter
- Physics of galaxy formation in semi-analytic models
- + High-redshift galaxies in GALICS
- How to generate mock observables from SAMs

Distant star-forming galaxies detected from...

... strong stellar emission (Lyman-Break Galaxies)

Hubble Ultra Deep Field

... Ly α emission line (Lyman- α Emitters)

HI gas photoionised by young stars

~ 68% of ionising photons reprocessed into Ly& during recombination

Build up of the galaxy population at early times

GALICS "adjusted" to reproduce LBG luminosity functions (Garel+12,15,16)

- Cold accretion mode
- High SF efficiency
- Fast merging
- Gas reincorporation over short timescale
- Strong SN feedback
- Dust attenuation from Σ_{cold} and Z
- etc

(Garel+12,15,16)

Stellar mass functions

(Garel+12,15,16)

SFR vs. Mstar

UV magnitude well correlated to M_{star} for LBGs

L_{Lyα} not a good tracer of M_{star}: complex radiation transfer of Lyα line in ISM/CGM/IGM => only a fraction fesc of Lyα photons escape galaxies

Coupling of GALICS with simulations of Lya transfer

(Verhamme+06, Schaerer+11)

=> L_{Lya} escape fraction

Lya luminosity functions

Pune, February 2018

T. Garel

Assess effect of cosmic variance using SAMs

Predictions for MUSE surveys in the HUDF

T. Garel

The host haloes of LAEs and their descendants

Bright LAEs at $z=6 \longrightarrow$ group/cluster galaxy haloes at z=0Faint LAEs at $z=6 \longrightarrow L^*$ galaxy haloes at z=0

Lyg as a tracer of reionisation ?

No Lya attenuation by IGM during in EoR in GALICS : part of intrinsic evolution?

Pune, February 2018

T. Garel

Pune, February 2018

T. Garel

- ACF measurement from photometric surveys
- Fraction of low-z interlopers $f_i \simeq 0.40\%$ Ouchi+10, Kashikawa+11, Hu+10
 - Add interlopers as randomly distributed sources in GALICS

Need to carefully account for intrinsic evolution, f_i and CV to use Lya as *reionisation tests*

- Cosmological simulations of dark matter
- Physics of galaxy formation in semi-analytic models
- High-redshift galaxies in GALICS
- + How to generate mock observables from SAMs

MOCK LIGHTCONES

Raw output from SAMs are in "box frame" (comoving positions, absolute magnitudes etc.)

"Lightcone" built from the different snapshots (e.g. Blaizot+06, Merson+13, Bernyk+16)

mimic "observational selection

Observed field

Pune, February 2018

Theoretical Astrophysical Observatory

Centre for Astrophysics and Supercomputing - Swinburne University of Technology

Bernyk et al. 2016

Darren Croton Swinburne University of Technology

Science Team: Max Bernyk, Darren Croton, Thibault Garel, Simon Mutch, Greg Poole, Chiara Tonini. Technical Team: Alistair Grant, Amr Hassan, Luke Hodkinson.

T. Garel

https://tao.asvo.org.au/tao/

New Calalogue		
TART GENERAL SPECTRAI PROPERTIES ENERGY	L SELECTION OUTPUT SUMMARY FORMAT AND SUBM	INFOBAR Y IIT
DISTRIBUTI	ION	Selected simulation details Millennium
< PREVIOUS	NEXT >	Cosmology WMAP-1
Data Selection		Cosmological parameters $\Omega m = 0.25$, $\Omega \Lambda = 0.75$, $\Omega b = 0.044$ $\sigma 8 = 0.9$, $h = 0.73$, $n = 1$
Catalogue type • Box	\$	Box size 500 Mpc/h
Simulation Galaxy Ma Millennium	odel Version	Mass resolution 8.6x10^8 Msun/h
Box size (Mpc/h)*	Redshift*	Force resolution 5 kpc/h
500	0.0000 🗘	Paper Springel et al. 2005
Output properties*		External link
Available	Selected	The German Astrophysical Virtual Observatory
Available TYPE TO FILTER Galaxy Masses	Selected TYPE TO FILTER	The German Astrophysical Virtual Observatory Selected galaxy model details SAGE
Available TYPE TO FILTER Galaxy Masses Total Stellar Mass Bulge Stellar Mass Black Hole Mass Cold Gas Mass Hot Gas Mass Ejected Gas Mass Intracluster Stars Mass Metals Total Stellar Mass	Selected TYPE TO FILTER Image: Constraint of the selected of	The German Astrophysical Virtual Observatory Selected galaxy model details SAGE The Semi-Analytic Galaxy Evolution (SAGE) model used in this work is a publicly available codebase that runs on the dark matter halo trees of a cosmological N-body simulation
Available TYPE TO FILTER Galaxy Masses Total Stellar Mass Bulge Stellar Mass Black Hole Mass Cold Gas Mass Hot Gas Mass Ejected Gas Mass Intracluster Stars Mass Metals Total Stellar Mass NOTE: Required fields are marked with	Selected TYPE TO FILTER Image: Comparison of the selected select	The German Astrophysical Virtual Observatory Selected galaxy model details SAGE The Semi-Analytic Galaxy Evolution (SAGE) model used in this work is a publicly available codebase that runs on the dark matter halo trees of a cosmological N-body simulation Paper Croton et al. 2016

CONCLUDING REMARKS

- SAMs are a very powerful/flexible tool to study galaxy formation & test different physical models
- Computationally cheap (wrt. hydro simulations...)
- Mock observables widely used to interpret observations & make predictions for extragalactic surveys
- Successful at reproducing many observations... but not all...

