Reionisation with cosmological radiation-hydrodynamics using RAMSES-RT

CENTRE DE RECHERCHE ASTROPHYSIQUE DE LYON

Joki Rosdahl

With

Aubert, Blaizot, Bieri, Biernacki, Commercon, Costa, Courty, Dubois, Geen, Katz, Kimm, Nickerson, Perret, Schaye, Stranex, Teyssier, Trebitsch Franco-Indian winter school, Feb 12th, 2018

Why simulations of reionisation?

- Galaxy formation and reionisation are really hard to describe analytically, because they are:
 - highly non-linear and three-dimensional
 - multi-physical (gravity, hydrodynamics, thermochemistry, radiative transfer)
 - multi-scale (from AU-scale stellar sources to Mpc inter-galactic medium)

- We need a theory of high-z galaxy evolution and reionisation to:
 - understand and interpret (and prepare for) observations
 - understand the physics (e.g. feedback) at play

What are the sources of reionisation?

Answer: most likely massive young stars emitting ionising radiation that **leaks** out of the inter-stellar medium (ISM) of galaxies

Analytic models require an ionising radiation escape fraction of

 $f_{\rm esc} \gtrsim 20\%$

Observationally it is impossible to measure f_{esc} , but indirect measurements in the local Universe give

 $f_{\rm esc} \lesssim 1 - 3\%$

We use simulations to try and understand these discrepancies

 $L_{min} = 0.001 L$ Forced Match to WMAP 68% Credibility Interval -2.5 Maximum Likelihood SFR History ML SFR History Without τ Constraint -3.0 SFR Density from UV Luminosity Density SFR Density from IR Luminosity Density -3.5 0 2 10 12 14 4 Redshift z

From Robertson et al. (2015)

What can we learn from simulations?

- \rightarrow Escape of radiation from galaxies; f_{esc}
- Sources of reionisation
- Clustering of sources and patchiness of reionisation
- Outside-in vs inside-out scenarios
- ➡ IGM temperature evolution

How do we simulate reionisation?

a: we first spend 10 years writing a code b: we use an existing cosmological code

- Arepo (not public)
- ART
- ENZO (with RHD)
- Gadget
- •Gasoline / ChaNGa
- Gizmo
- <u>RAMSES</u> (with RHD, and the focus of this talk)

Cosmological simulations

All available codes have the same components

Included components:

- Model of the cosmological expansion of a homogeneous Universe
- 3d evolution of:
 - **Dark matter**: gravity
 - Baryonic gas:

(self-)gravity, hydrodynamics, radiative cooling, star formation

- Stars: gravity, SNe feedback
- Ionsing radiation

The impact of radiation is mainly via photoionisation heating

There is also radiation pressure, but this is not very important for reionisation

RAMSES - my cosmological code of choice

- AMR allows the calculation to be focused on regions of interest.
- The simulation volume can be split and run in parallel on thousands of CPUs
- Dark matter, gas, and stars are all included
- I spent my PhD adding the propagation of *radiation* and its interactions with gas, see Rosdahl et al. (2013), Rosdahl & Teyssier (2015)
- RAMSES-RT is one of two cosmological codes with publicly available radiationhydrodynamics (RHD)

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Tests

Reionisation with RAMSES-RT

main challenges in numerical approaches

To solve this numerically, we need to overcome two main problems:

main challenges in numerical approaches

To solve this numerically, we need to overcome two main problems:

I. There are seven dimensions! Hydrodynamics have only four!

main challenges in numerical approaches

To solve this numerically, we need to overcome two main problems:

- I. There are seven dimensions! Hydrodynamics have only four!
- II. The timescale is $\propto u^{-1}$, where u is *speed*, and $u_{\text{light}} \sim 1000 u_{\text{gas}}$, so \sim thousand RT steps per hydro step!!

main challenges in numerical approaches

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \mathbf{n} \cdot \nabla I_{\nu} = -\kappa_{\nu}I_{\nu} + \eta_{\nu}$$

 $I_{
u}(\mathbf{x},\mathbf{n},t)$ intensity $\kappa_{
u}\left(\mathbf{x},\mathbf{n},t
ight)$ absorption $\eta_{\nu}\left(\mathbf{x},\mathbf{n},t
ight)$ source function

Two common strategies for radiative transfer:

I. Ray tracing methods: Cast a finite number of rays from a finite number of sources

- Simple and intuitive
- ... but efficiently covering the volume is tricky
- ...and load scales with number of sources/rays

II. Moment methods: Convert the RT equation into a system of conservation laws that describe a *field* of radiation

- Not so intuitive, and *not rays*
- ... but fits easily with a hydrodynamical solver for RHD
- ...naturally takes advantage of AMR and parallellization
- ... no problem with covering the volume
- ... no limit to number of radiation sources

 $10^1 \ 10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^7 \ 10^8 \ 10^9 \ 10^{10} 10^{11}$ F [photons $cm^{-2} sec^{-1}$] 1 kpc 48.8 Myr $10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 10^{0} \ 10^{1} \ 10^{2} \ 10^{3} \ 10^{4}$ $n_{\rm H}~[{\rm cm}^{-3}]$ and the second state of th

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Tests

Reionisation with RAMSES-RT

Moments of the RT equation

to get rid of the angular dimension

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \mathbf{n} \cdot \nabla I_{\nu} = -\kappa_{\nu}I_{\nu} + \eta_{\nu}$$

$$I_{\nu}(\mathbf{x}, \mathbf{n}, t) \text{ intensity}$$

$$\kappa_{\nu}(\mathbf{x}, \mathbf{n}, t) \text{ absorbtion}$$

$$\eta_{\nu}(\mathbf{x}, \mathbf{n}, t) \text{ source function}$$
Zeroth moment: $\oint f(\mathbf{n}) d\Omega$

$$\frac{1}{c}\frac{\partial}{\partial t}\oint I_{\nu} d\Omega + \nabla \oint \mathbf{n} I_{\nu} d\Omega = -\kappa_{\nu} \oint I_{\nu} d\Omega + \eta_{\nu} \oint d\Omega$$
First moment: $\oint \mathbf{n} f(\mathbf{n}) d\Omega$

$$\frac{1}{c}\frac{\partial}{\partial t} \oint \mathbf{n} I_{\nu} d\Omega + \nabla \oint \mathbf{n} \otimes \mathbf{n} I_{\nu} d\Omega = -\kappa_{\nu} \oint \mathbf{n} I_{\nu} d\Omega$$

These equations contain the first three moments of the intensity:

$$E_{\nu} = \frac{1}{c} \oint I_{\nu} d\Omega \qquad (\text{energy per volume and frequency}),$$

$$\mathbf{f}_{\nu} = \oint \mathbf{n} \ I_{\nu} d\Omega \qquad (\text{energy flux per area and time and frequency}),$$

$$\mathbb{P}_{\nu} = \frac{1}{c} \oint \mathbf{n} \otimes \mathbf{n} \ I_{\nu} d\Omega \qquad (\text{force per area and frequency}),$$

$$\frac{\partial E_{\nu}}{\partial t} + \nabla \cdot \mathbf{f}_{\nu} = -\kappa_{\nu} c E_{\nu} + S_{\nu}$$
$$\frac{\partial \mathbf{f}_{\nu}}{\partial t} + c^{2} \nabla \cdot \mathbf{p}_{\nu} = -\kappa_{\nu} c \mathbf{f}_{\nu}$$

Moment RT equations

$$\frac{\partial E_{\nu}}{\partial t} + \nabla \cdot \mathbf{f}_{\nu} = -\kappa_{\nu} c E_{\nu} + S_{\nu}$$

$$\frac{\partial E_{\nu}}{\partial t} + c^{2} \nabla \cdot \mathbf{p}_{\nu} = -\kappa_{\nu} c \mathbf{f}_{\nu}$$

$$E_{\nu} = \frac{1}{c} \oint I_{\nu} d\Omega$$
(energy per volume and frequency)
$$f_{\nu} = \oint \mathbf{n} I_{\nu} d\Omega$$
(energy flux per area and time and frequency)
$$\mathbf{p}_{\nu} = \frac{1}{c} \oint \mathbf{n} \otimes \mathbf{n} I_{\nu} d\Omega$$
(force per area and frequency)

With ionising radiation, it makes more sense to keep track of *photon number density* than energy density

$$\frac{\partial N_{\nu}}{\partial t} + \nabla \cdot \mathbf{F}_{\nu} = -\sum_{j}^{\text{HI,HeI,HeII}} n_{j} c \sigma_{\nu j} N_{\nu} + \dot{N}_{\nu}^{*} + \dot{N}_{\nu}^{rec} \\ \frac{\partial \mathbf{F}_{\nu}}{\partial t} + c^{2} \nabla \cdot \mathbb{P}_{\nu} = -\sum_{j}^{\text{HI,HeI,HeII}} n_{j} c \sigma_{\nu j} \mathbf{F}_{\nu} \\ \frac{\partial \mathbf{F}_{\nu}}{\partial t} + c^{2} \nabla \cdot \mathbb{P}_{\nu} = -\sum_{j}^{\text{HI,HeI,HeII}} n_{j} c \sigma_{\nu j} \mathbf{F}_{\nu}$$

Frequency binning

We separate the RT equations into M sets, or photon groups, that discretise the frequency continuum

➡M (a handful of) separate radiation fields, one per frequency bin, with average photon energies and cross sections

Radiation variables, stored in each cell

one set per photon group (neglecting the i-index)

Describe isotropic plus directed radiation in each volume element (cell)

We almost have usable expressions - we 'only' need to close the equations Joakim Rosdahl

Closing the moment RT equations

Three closures:

I: Flux limit diffusion: Radiation flows in the direction of less radiation Good description in the optically thick limit

II: (OT)VET: (Optically thin) variable Eddington tensor: The tensor (direction of flow) is made from the sum of all sources Nonlocal expression, so computationally challenging.

III: MI closure (Levermore 1984): The tensor is composed out of the **local** quantities N and **F** only

M1 closure - a warning

The loss of the angular dimension combined with the locality of M1 results in peculiar radiation propagation

For speed, we sacrifice the collision-less nature of photons

$$\frac{\partial N}{\partial t} + \nabla \cdot \mathbf{F} = -\sum_{j}^{\mathrm{HI, HeI, HeII}} n_{j}\sigma_{j}cN + \dot{N}^{\star} + \dot{N}^{rec}$$
$$\frac{\partial \mathbf{F}}{\partial t} + c^{2}\nabla \cdot \mathbb{P} = -\sum_{j}^{\mathrm{HI, HeI, HeII}} n_{j}\sigma_{j}c\mathbf{F}$$
$$\mathbb{P} = \mathbb{D}N$$

Solving the M1 moment RT equations on a uniform grid

Solving the RT moment equations on a grid

Operator splitting: separate into **3 steps** that can be solved in

order over one discrete timestep at a time:

$$t^n \to t^{n+1} = t^n + \Delta t$$

Photon transport

Photon transport

Intercell flux function

$$\mathcal{U}_{l}^{n+1} = \mathcal{U}_{l}^{n} + \frac{\Delta t}{\Delta x} \left(\mathcal{F}_{l-1/2}^{n} - \mathcal{F}_{l+1/2}^{n} \right)$$

$$\mathcal{U} \equiv (N, \mathbf{F})$$

$$\mathcal{F} \equiv (\mathbf{F}, c^{2} \mathbb{P})$$
How do we pick $\mathcal{F}_{\ell+1/2}$??
Simplest case is average between cells:
$$\mathbf{Harten-La} \mathcal{F}_{l} \mathbf{van} \mathcal{F}_{l,q} \mathbf{er} - \mathbf{V}_{l} \mathbf{f}_{l+1} = \mathcal{U}_{l}^{n} + \frac{\Delta t}{\Delta x} \left(\mathcal{F}_{l-1} + \mathcal{F}_{l+1} \right)$$

$$\mathcal{F}_{l+1/2} = \frac{\lambda^{+} \mathcal{F}_{l} - \lambda^{-} \mathcal{F}_{l+1} + \lambda^{+} \lambda^{-} \left(\mathcal{U}_{l+1} - \mathcal{U}_{l} \right)}{\lambda^{+} - \lambda^{-}}$$

$$\lambda^{+} = \max(0, \lambda_{l}^{\max}, \lambda_{l+1}^{\max}) \\ \lambda^{-} = \min(0, \lambda_{l}^{\min}, \lambda_{l+1}^{\min}) = \text{angle-dependent 'speeds'} = \text{eigenvalues of } \frac{\partial \mathcal{F}}{\partial \mathcal{U}}$$

a simpler flux function

$$\textbf{HLL:} \quad \mathcal{F}_{l+1/2} = \frac{\lambda^{+}\mathcal{F}_{l} - \lambda^{-}\mathcal{F}_{l+1} + \lambda^{+}\lambda^{-}\left(\mathcal{U}_{l+1} - \mathcal{U}_{l}\right)}{\lambda^{+} - \lambda^{-}}$$

A stable alternative is not to bother with eigenvalues at all. In the Global Lax Friedrich function, or GLF, we make the approximation that

$$\lambda^+ = -\lambda^- = c$$

which gives

GLF:

$$\mathcal{F}_{l+1/2} = \frac{\mathcal{F}_l + \mathcal{F}_{l+1}}{2} - \frac{c}{2} \left(\mathcal{U}_{l+1} - \mathcal{U}_l \right)$$

The resulting photon transport is more diffusive than HLL, which is both good and bad

HLL vs GLF transport of photons

GLF

...I generally prefer GLF

Thermochemistry

- Hydro codes usually assume photoionisation equilibrium (PIE) where the gas ionisation fractions are a tabulated function of temperature and density
- Not ideal if we want to conserve photons
- Therefore we store and evolve ionisation fractions in each cell: $x_{\text{HII}}, x_{\text{HeII}}, x_{\text{HeIII}}$
- Molecular hydrogen was added last week (Nickerson, Teyssier, & Rosdahl, 2018)

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Tests

Reionisation with RAMSES-RT

The speed of light problem

The explicit advection of radiation across cells makes us slaves to the Courant condition

The reduced speed of light approximation (RSLA) Gnedin & Abel 2001

To cheat death we use the reduced speed of light approximation (Gnedin & Abel 2001):

$$c_{\rm red} = \frac{c}{1000} \quad \blacktriangleright \quad \Delta t_{\rm RT} \sim \frac{\Delta x}{c_{\rm red}} \sim \Delta t_{\rm HD}$$
$$\rightarrow \text{Only ~2X runtime increase, compared to pure hydro}$$

Not as dramatic as it sounds:

The dynamic speed in RHD simulations is that of *ionisation fronts*, not *c*.

We just want to get the front correct...

Setting the reduced speed of light

Assuming a constant luminosity in a homogeneous medium...

Regime	$n_{\rm H}~({\rm cm}^{-3})$	\dot{N} (s ⁻¹)	r _S (kpc)	t _{cross} (Myr)	t _{rec} (Myr)	$\tau_{\rm sim}$ (Myr)	$f_{ m c,min}$
MW ISM MW cloud Iliev tests 1, 2, 5 Iliev test 4	$ \begin{array}{r} 10^{-1} \\ 10^2 \\ 10^{-3} \\ 10^{-4} \end{array} $	2×10^{50} 2×10^{48} 5×10^{48} 7×10^{52}	0.9 2 × 10 ⁻³ 5.4 600	3×10^{-3} 6×10^{-6} 2×10^{-2} 2	1.2 1×10^{-3} 122.3 1200		3×10^{-2} 6×10^{-4} 2×10^{-2} 1
Reionisation							

$$f_{\rm c} = \min(1; \sim 10 \times t_{\rm cross} / \tau_{\rm sim})$$

These are suggestive values...

Light speed convergence tests are the best final verdict.

Great for ISM and CGM simulations, but death for reionisation (of cosmological voids)

The variable speed of light approximation (VSLA) Katz et al. 2017

The main limitation for performing large-scale reionisation simulations was that reionisation of cosmological voids happens 'close' to the (real) speed of light.

We recently overcame this problem with a *variable speed of light approximation*, where c is slow in dense gas but speeds up in the diffuse IGM (see Katz et al, 2017).

Harley Katz

This makes it possible, for the first time, to perform large-scale reionsiation simulations that resolve individual galaxies.

The variable speed of light approximation (VSLA) From Katz et al. 2017

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Tests

Reionisation with RAMSES-RT

Ramses hydrodynamics

- $\bullet\,$ Gravitational potential $\phi\,$ is imprinted on the AMR grid with a Poisson equation solver
- Mass, momentum and energy are advected with a second-order Godunov solver
- Operator splitting: Radiative cooling Λ is subcycled on every gravito-hydro timestep

RHD: Coupling hydrodynamics and RT

HD equations solved in Ramses:

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) + \nabla \cdot \left(\rho \mathbf{u} \otimes \mathbf{u} \right) + \nabla p &= \rho \nabla \phi\\ \frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left(\mathcal{E} + p \right) \mathbf{u} &= -\rho \mathbf{u} \cdot \nabla \phi + \Lambda(\rho, \varepsilon)\\ p &= (\gamma - 1)\varepsilon\\ \mathcal{E} &= \frac{1}{2}\rho u^2 + \varepsilon \end{split}$$

RT equations:

$$\begin{split} \frac{\partial N}{\partial t} + \nabla \cdot \mathbf{F} &= -\sum_{j}^{\mathrm{HI, HeI, HeII}} n_{j}\sigma_{j}cN + \dot{N}^{\star} + \dot{N}^{rec} \\ \frac{\partial \mathbf{F}}{\partial t} + c^{2}\nabla \cdot \mathbb{P} &= -\sum_{j}^{\mathrm{HI, HeII}} n_{j}\sigma_{j}c\mathbf{F} \\ \hline \mathbb{P} &= \mathbb{D}N \end{split}$$

Joakim Rodahl
$$\begin{aligned} \frac{\partial \varepsilon}{\partial t} &= \Lambda\left(\rho, \varepsilon, n_{j}, N_{i}\right) \end{aligned}$$

HD and RT couple where photons interact with gas

Considerations:

- $\Delta t_{hydro} >> \Delta t_{RT} >> \Delta t_{chemistry}$
- The coupling happens in ∧ (i.e the thermochemistry)

Operator splitting:

The thermochemistry is subcycled within the RT, which is subcycled within the hydrodynamics.

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Tests

Reionisation with RAMSES-RT

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Tests

Reionisation with RAMSES-RT

Science with RAMSES-RT on many scales

Molecular clouds, sub-pc to pc scales

Gavagnin, Bleuler, Rosdahl, & Teyssier (2017) Kimm, Cen, Rosdahl, & Yi (2016) Geen, Hennebelle, Tremblin, & Rosdahl (2015, 2016) Geen, Rosdahl, Blaizot, Devriendt, & Slyz (2015) Geen, Soler, & Hennebelle (2017)

Galaxy-scale stellar feedback, pc to kpc scales Butler, Tan, Teyssier, Rosdahl, van Loo, & Nickerson (2017) Rosdahl, Schaye, Teyssier, & Agertz (2015)

Rosdahl & Teyssier (2015)

Feedback from active galactic nuclei, pc to kpc scales

Trebitsch et al. (2018) Costa, Rosdahl, Sijacki, & Haehnelt (2017a,b) Bieri, Dubois, Rosdahl, Wagner, Silk, & Mamon (2016)

Properties of the circum-galactic medium, kpc to Mpc scales

Rosdahl & Blaizot (2012) Trebitsch, Verhamme, Blaizot, & Rosdahl (2016)

Reionisation and escape of ionising photons, pc to Mpc scales

Kimm & Cen (2014) Trebitsch, Blaizot, Rosdahl, Devriendt, & Slyz (2017) Kimm, Katz, Haehnelt, Rosdahl, Devriendt, & Slyz (2017) Katz, Kimm, Sijacki, Haehnelt (2017) Rosdahl et al. (2018)

Two classes of reionisation simulations

Large volume with unresolved galaxies	(Gap) So far impossible	Tiny volume with one or a few well resolved galaxies
 Representative volume on nearly homogeneous scale and statistical samples of (massive) halos. But galaxies are unresolved. <i>f</i>esc is a free parameter. Low-mass halos are not captured. Good for the large-scale process, clustering, patchiness. Not-so-good for understanding the (unresolved) sources of ionisation. 		Production of ionising radiation and fesc resolved. But the large scale reionisation process is not captured (nor the actual contribution from individual sources).

Large volume simulations of reionisation

COsmic DAwn (CODA) Ocvirk et al, 2015

- *f*_{esc} calibrated to reproduce observed reionisation history
- Prediction of how the local volume was reionised
- Shapes of ionisation regions
- Suppression of star formation in low-mass haloes due to reionisation
- Ionisation state of cosmological filaments

Tiny volume simulations with RAMSES-RT

Zoom technique to resolve one galaxy and its environment in a cosmological volume

From Kimm et al. (2017): 2 cMpc box, 0.7 pc resolution (in a small part of the volume)

Tiny volume simulations with RAMSES-RT

From Kimm et al., 2017: 2 cMpc box, 0.7 pc resolution (in a small part of the volume)

Kimm et al. studied f_{esc} from minihalos.

We found high escape fractions,

but these galaxies basically shut themselves down with radiation,

so they probably don't contribute much to reionisation.

Tiny volume simulations with RAMSES-RT

From Trebitsch et al. (2017):

Physical resolution of 7 pc in three targeted halos and their environments

Main result:

f_{esc} is far from constant and heavily regulated by supernova (SN) feedback

Two classes of reionisation simulations

Large volume with
unresolved galaxies

Tiny volume with one or a few well resolved galaxies

Representative volume on nearly homogeneous scale and statistical samples of (massive) halos.

But galaxies are unresolved. fese is a free parameter.

Low mass halos are not captured.

Good for the large-scale process, clustering, patchiness.

Not so good for understanding the (unresolved) sources of ionisation.

Production of ionising radiation and f_{esc} resolved.

But the large scale reionisation process is not captured (nor the actual contribution from individual sources).

Sphinx is mainly made possible by momentbased RT and the variable speed-of-light

arXiv:1801.07259

The SPHINX Cosmological Simulations of the First Billion Years: the Impact of Binary Stars on Reionization*

Joakim Rosdahl¹[†], Harley Katz^{2,3}, Jérémy Blaizot¹, Taysun Kimm^{4,3}, Léo Michel-Dansac¹, Thibault Garel¹, Martin Haehnelt³, Pierre Ocvirk⁵, and Romain Teyssier⁶.

¹Univ Lyon, Univ LyonI, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France
 ²Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
 ³Kavli Institute for Cosmology and Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
 ⁴Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
 ⁵Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l'Université, 67000 Strasbourg, France
 ⁶Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

48

The Sphinx simulations in context

Project goals

- Understand the process and sources of reionisation
- Understand how patchy reionisation and metal enrichment suppresses or enhances the growth of satellite galaxies
- Model observational Lyman-alpha signatures produced by the various stages and environments during reionisation
- Predict luminosity function and galaxy distribution at extreme redshift for the JWST era
- Obtain statistical understanding about UV escape from the ISM (connection to feedback, halo mass)
 First: What do binary stars have to do with reionisation?

Binary stars ?

Binary Stars Can Provide the "Missing Photons" Needed for Reionization

Xiangcheng Ma,¹* Philip F. Hopkins,¹ Daniel Kasen,^{2,3} Eliot Quataert,² Claude-André Faucher-Giguère,⁴ Dušan Kereš⁵ Norman Murray⁶[†] and Allison Strom⁷

- Post-processing pure-hydro zoom simulations, Ma et al. (2016) predict 4-10 times boosted fesc (escape of ionising radiation) with a binary population SED
- The reason: longer and stronger radiation due to mass transfer and mergers in binary systems

SED models Spectral Energy Distributions for stellar populations

- BC03 = Single stellar population model from Bruzual & Charlot (2003)
- BPASS = Binary Population and Spectral Syntesis from Eldridge et al.
- ⇒SPHINX: using full RHD cosmological simulations, what does BPASS do for the reionsiation history?

Setup of the Sphinx simulations

Sphinx simulations

5 cMpc box with high mass resolution 10 cMpc box with lower <u>mass</u> resolution (but same physical resolution)

...plus many tiny 1.25-2.5 cMpc boxes for exploration and calibration

SPHINX setup

- **Physical resolution** max 10 pc, required to capture the escape of ionising radiation from galaxies (Kimm et al, 2017).
- DM mass resolution of 3×10⁵ (8 times less in 5 Mpc box).
 10⁸ M_☉ halo has 300 (2,500) particles ≫ all potential sources resolved.
- Stellar particle resolution of $10^3 M_{\odot}$ (particle = a stellar population)
- Bursty turbulence-dependent star formation (Devriendt et al, in prep)
- SN explosions modelled with momentum kicks (Kimm et al., 2015)
 - We calibrate SN rates to reproduce a sensible SF history (four times boosted SN rate derived from Kroupa initial mass function)
- No calibration on unresolved fesc (i.e. we simply inject the SED luminosity)
- We run with binary and single star SEDs

Full 10 cMpc box, binary SED:

 $10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}$

 $n_{
m H}$ [cm $^{-3}$]

100 kpc

z=9.67

10 cMpc box, binary SED, a closer look

 $10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}$

F [cm⁻² s⁻¹]

27 kpc

z=6.14

Much more efficient reionsiation with binary populations, independent of volume size and mass resolution

Binary stars and fesc

Binary stars and fesc

fesc for the full volume

Summary

- Cosmological simulations of reionisation are necessary for understanding observations and the high-z universe
- But they are expensive to run due to the radiative transfer (many dimensions, speed of light)
- RAMSES-RT is one of two public radiation-hydrodynamical codes with which you can run your own reionisation simulations
- The Sphinx simulations (run with RAMSES-RT) are the first full cosmological RHD simulations of reionisation that resolve f_{esc} from galaxies
- Pilot Sphinx paper is just out:
 - Stellar populations with binary systems really affect reionsiation, due to the interplay of feedback and f_{esc}!
 - Much more to come