

# ALMA: Molecular gas across cosmic times and environments



<u>Franco-Indían Astronomy school</u>

From Re-ionization to Large Scale Structure A multiwavelength approach

11th-17th February 2018, IUCAA-Pune (India)

Françoise Combes Observatoire de Paris 15 February 2018





1- Cosmic evolution of gas content

**Outline** 

- **2-** Evolution of Star Formation Efficiency
- **3- Physical processes of quenching**
- **4- Environmental effects**

# 1-Census of cold gas in galaxies

While 6% of baryons are in stars now (Fukugita et al 1998)  $\Omega_* \sim 3 \ 10^{-3}$ the atomic gas HI in galaxies is ~10% (Zwaan et al 2005)  $\Omega_{\rm HI} \sim 3.5 \ 10^{-4}$ and the molecular gas, from CO (Sauty et al 2003, Keres et al 2003)  $\Omega_{\rm H2} \sim 1.2 \ 10^{-4}$ The molecular fraction is

expected to increase with z:

Galaxy size ~ 1/(1+z), + Fgas higher: →Denser gas HI → H<sub>2</sub>



HIZELS, Thomson et al 2017

# Cosmic evolution of H<sub>2</sub>

*Walter et al, Decarli et al 2014:* Deep PdBI obs of the HDF-N, 3mm *Decarli et al 2016:* ASPECS, ALMA of UDF in Bands 3 & 6 Evolution more contrasted then in models, factor 3-10



### Why does SFR(z) increases?



Whitaker et al 2014



Madau & Dickinson 2014

#### →Gas fraction

 Star formation efficiency Frequent mergers Shorter dynamical times Higher gas density
 Quenching since z=1.7 Environment Morphology Mass

#### 2-Large range of SF efficiency at high-z

In SMGs, starbursts  $t_{dep} = 1/SFE \sim 10-100$  Myr Massive BzK galaxies, CO sizes  $\sim 10$ kpc? L(FIR)  $\sim 10^{12}$  Lo « Normal » SFR, M(H2)  $\sim 2 \ 10^{10}$  Mo  $t_{dep} \sim 2$  Gyr



Starburst when gas concentrated in the center (nuclear SB)

Caveat: XCO conversion ratio Requires high-J CO lines HCN, HCO+,, Dust emission, etc..

Low excitation, like MW→ XCO 4.5 x that of ULIRGS

![](_page_6_Figure_0.jpeg)

# High SFE (starbursts) at z=1.4-3.2

Herschel detected starbursts Galaxies from COSMOS, 300-800 Mo/yr, f<sub>gas</sub> 30-50%

![](_page_6_Figure_3.jpeg)

![](_page_7_Picture_0.jpeg)

### **PHIBSS-1** Project

with L. Tacconi, R. Genzel, S. Garcia-Burillo, R. Neri, et al

![](_page_7_Figure_3.jpeg)

~50 galaxies -50 at z~2.3 and z~1.2

High detection rate >85%, in these « normal » massive Star Forming Galaxies (SFG) Gas content ~34% and 44% in average at z=1.2 and 2.3 resp. *Tacconi et al 2010, 2013* 

![](_page_7_Picture_6.jpeg)

#### **Resolved Kennicutt-Schmidt diagram**

![](_page_8_Figure_1.jpeg)

 $\log_{10}(\Sigma_{\rm gas}\,/[{
m M}_\odot\,{
m pc}^{-2}\,])$ 

Σgas

Freundlich et al 2013

#### Scaling relations, several samples

![](_page_9_Figure_1.jpeg)

 $\mu = M_{mol} / M^* \sim (1+z)^{2.8} (\delta MS)^{0.54} (M^*)^{-0.34}$ 

Tacconi et al 2017

#### Depletion time, CO or dust tracers

![](_page_10_Figure_1.jpeg)

Genzel et al 2015

### Compilation between z=0 and 4

758 galaxies, different samples, normalised to the Main sequence (MS)

PHIBSS2, COLD-GASS (Saintonge et al 2016-17)
ALMA (Decarli et al 2016)
Herschel dust (Magnelli e tal 2014, Bethermin et al 2015)
normalised to minimise the zero points of calibration (M\*, CO masses..)

 $\log(M^*/M_0)=9.-11.8$ ,  $\delta MS=SFR/SFR(MS)=10^{-1.3}$  to  $10^{2.2}$ 

tdepl ~  $(1+z)^{-0.57}$  ( $\delta MS$ )<sup>-0.44</sup>

 $\mu = M_{mol} / M^* \sim (1+z)^{2.8} (\delta MS)^{0.54} (M^*)^{-0.34}$ 

Tacconi et al 2017

![](_page_12_Figure_0.jpeg)

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

#### SFE and depletion times with continuum

![](_page_15_Figure_1.jpeg)

### sSFR of disks?, slope ~0

![](_page_16_Figure_1.jpeg)

Abramson et al 2014

Overestimate in QG

### More than B/T, the concentration (Sersic n)

![](_page_17_Figure_1.jpeg)

# 3- Quenching processes

![](_page_18_Figure_1.jpeg)

FAST (<~0.1 Gyr)</li>
→ Heating the gas (transient)
Turbulence by interactions, SF feedback
Gas will dissipate, and SF come back
→ Ejecting the gas present (transient)
SN and AGN winds, radio jets

SLOW (2-4 Gyr)
→ Stabilising the gas:
Morphological quenching, bulge formation
→ Cutting the gas refueling:
Gravity/halo quenching, Environment
(harassment, strangulation, ram-pressure or tidal stripping..)

Peng et al 2010

# Galactic wind quenching

![](_page_19_Figure_1.jpeg)

High-velocity wings in both nuclei! One nearly edge-on, the other face-on

Sakamoto et al 2014

ALMA obs CO(3-2) Merger-induced Starburst: N3256 ULIRG z=0.01

![](_page_19_Figure_5.jpeg)

![](_page_19_Figure_6.jpeg)

# Two bipolar flows, $\tau \sim 1$ Myr

![](_page_20_Figure_1.jpeg)

# Molecular outflows

6Dec (")

0

-5

-10

#### Mrk 231

AGN and also nuclear Starburst,  $10^7$ - $10^8$ Mo Outflow 700Mo/yr

#### IRAM Ferruglio et al 2010

![](_page_21_Figure_4.jpeg)

![](_page_21_Figure_5.jpeg)

High density, HCN, HCO+, Aalto et al 2012

# **Relations outflows with AGN**

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

#### For AGN-hosts, the outflow rate Correlates with the AGN power

Cicone et al 2014

dM/dt v ~20 L<sub>AGN</sub>/c Can be explained by energy-driven outflows (Zubovas & King 2012)

### Radio mode: molecular flow IC5063

![](_page_23_Figure_1.jpeg)

0.0

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

Morganti et al 2015

Some of the gas optically thin in the flow?

![](_page_23_Figure_6.jpeg)

![](_page_23_Figure_7.jpeg)

Dasyra et al 2016

![](_page_23_Figure_9.jpeg)

-600<V<400 km/s

#### AGN jet in the plane of N1068

![](_page_24_Figure_1.jpeg)

-10

# Fueling BH and feedback in low-lum AGN

![](_page_25_Picture_1.jpeg)

The smallest outflow detected AGN feedback V=100km/s, 7% of the mass  $M_{BH} = 4 \ 10^6 Mo$ Flow momentum =10 L<sub>AGN</sub>/c

Combes et al 2013

N1433 CO(3-2) ALMA On HST

![](_page_25_Picture_5.jpeg)

![](_page_25_Figure_6.jpeg)

![](_page_26_Figure_0.jpeg)

# Cold gas in filaments

#### Inflow and outflow coexist

The molecular gas from previous cooling is dragged out by the AGN feedback

The bubbles create inhomogeneities and further cooling At R~20kpc, tc/tff ~10 → thermal instability (*McCourt et al 12*)

The cooled gas fuels the AGN

**Velocity much lower than free-fall** Salome et al 2008, 2011

![](_page_27_Picture_6.jpeg)

#### Salomé et al 2006

![](_page_27_Figure_8.jpeg)

![](_page_28_Figure_0.jpeg)

# ALMA: cold gas in cool core clusters

![](_page_29_Figure_1.jpeg)

Abell 2597 ALMA CO(2-1) absorption in front of the AGN synchrotron

#### Red-shifted only Dense clouds fueling the AGN

![](_page_29_Picture_4.jpeg)

Tremblay et al 2016

### **CO** absorptions

10<sup>21</sup>-10<sup>23</sup> cm<sup>-2</sup> cold (< 40K) gas present within 30kpc of the BCG

#### **Only inflowing in CO** Also outflowing in HI

![](_page_30_Figure_3.jpeg)

![](_page_30_Figure_4.jpeg)

## Morphological Quenching (~5 Gyr)

![](_page_31_Picture_1.jpeg)

Disks only are more unstable

Bulges and central condensations stabilise disks

Toomre parameter  $Q = \sigma / \sigma crit$ 

 $\sigma$ crit= 3.36 G $\Sigma / \kappa$ 

Bulge increases  $\kappa$ , and Q If  $\sigma$  and  $\Sigma$  remains constant Inside out quenching

Martig et al 2009

# Gravity quenching

![](_page_32_Figure_1.jpeg)

Dekel & Birnboim 2005

![](_page_32_Figure_3.jpeg)

Depends on halo mass (not galaxy) May stop the gas supply already in groups → red and dead

# 4- Environmental effects

→ Gas stripped in clusters at z=0
→ A reversal is expected at z~1

#### Chung et al, VIVA with VLA

![](_page_33_Picture_3.jpeg)

![](_page_33_Figure_4.jpeg)

# The reversal of the star formation-density relation?

### **Effects of mergers (major or minor)**

![](_page_34_Figure_1.jpeg)

Davies et al 2015 (GAMA) 300 000 galaxies, 20 000 pairs

#### **Tides and ram-pressure**

Both physical processes are acting, difficult to disentangle

![](_page_35_Picture_2.jpeg)

![](_page_35_Picture_3.jpeg)

#### NGC 4438 & 4435 in Virgo First CO detections outside galaxy disks

![](_page_35_Picture_5.jpeg)

Vollmer et al 2005

Combes et al 1988

![](_page_36_Figure_0.jpeg)

Giant H $\alpha$  tail in Virgo

![](_page_37_Picture_1.jpeg)

Kenney+ 2008

### Tail around M86 : H2 gas in hostile environment

![](_page_38_Figure_1.jpeg)

#### Tidal tail N4388 – M86

![](_page_39_Figure_1.jpeg)

![](_page_39_Figure_2.jpeg)

➔ Formation in situ of H<sub>2</sub> Star formation enrich the ICM Low SFE, tdep ~500Gyr

Verdugo et al 2015

### Star formation efficiency

![](_page_40_Figure_1.jpeg)

Gas in tails, and far from disks have not enough pressure from stars

And the gas surface density is not enough for fast HI to  $H_2$  transition

Verdugo et al 2015

#### Importance of pressure

The surface density of stars is very important for the SF efficiency

![](_page_41_Figure_2.jpeg)

![](_page_41_Figure_3.jpeg)

Shi, Helou et al 2011

The HI to H<sub>2</sub> transituon is favored by external pressure

Blitz & Rosolowsky 2006

# Ram-pressure in Norma cluster

Ram pressure in clusters: in general slow: In Virgo, HI deficient, but not  $H_2$  (Kenney & Young 1989) but can be fast in exceptional cases: ESO137-001

![](_page_42_Figure_2.jpeg)

Jachym et al 2014

### **Ram-pressure quenching**

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

Jachym et al 2014

# **Ram-pressure in Coma**

![](_page_44_Figure_1.jpeg)

R(kpc)

Jachym et al 2016

![](_page_45_Figure_0.jpeg)

### Molecular gas in the shell

#### H<sub>2</sub> dominant at E, while HI at W

 $H\alpha$  map

Salome et al 2016

![](_page_46_Figure_4.jpeg)

#### Red: CO, White: HI, FUV-Galex: black CO21, HI contours

### Star formation triggering

The radio jet effectively triggers star formation in the shell along the jet  $\rightarrow$  positive AGN feedback

![](_page_47_Figure_2.jpeg)

Salome et al 2016

#### **Role of mergers in starbursts**

At low z, mergers trigger starbursts – The most energetic ULIRGs with highest SFE are all mergers (*Sanders & Mirabel 1996*)

Mergers increase  $\sim (1+z)^4$  (*Lefevre et al*, 2000, *Lotz et al* 2011) → How SFE varies with z?

![](_page_48_Figure_3.jpeg)

Due to high gas fraction, the number of clumps, violent instabilities, is already large in isolated galaxies at high z

Fensch et al 2017

#### Gas density PDF

No difference in the PDF for high gas fraction for isolated or interacting galaxies (*Fensch et al 2017*)

![](_page_49_Figure_2.jpeg)

to have SFR = 1Mo/yr and 60Mo/yr for isolated galaxies

### Galaxy mergers with high gas content

![](_page_50_Figure_1.jpeg)

#### Starbursts at high redshift z~ 2-3

![](_page_51_Figure_1.jpeg)

# Conclusion

![](_page_52_Figure_1.jpeg)

→ Galaxies at high z have a larger gas fraction Whatever their position, on the MS or not

→ SFE vs z, small evolution on MS, larger for SB Depletion time 2 or 10 times smaller

The starburst is triggered when the gas is concentrated (merger?) Diagnostics with CO excitation, Dense gas tracers (HCN, HCO+)..

→ Simulations show SF saturation at high z No influence of galaxy interactions, contrary to observations

![](_page_52_Picture_6.jpeg)

![](_page_52_Picture_7.jpeg)