

Lensed Galaxies and MUSE

David Lagattuta

Franco-Indian Astronomy School

IUCAA, Pune, India

Outline

- Brief introduction to gravitational lensing
 - More in-depth discussion on Thursday
- Description of MUSE (and other IFUs)
- Science with Lensing+MUSE

What is Gravitational Lensing?

- Generally, a deflection of light due to gravity
 - Similar to geometric lensing (with glass)
 - However, light is not focused...merely redirected

How does lensing work?

- Dependent on two main factors:
 - -Geometry
 - -Mass
- Changing either will change what you see
 Can also determine the "type" of lensing observed

Strong Lensing

- Occurs when the foreground and background galaxies are close to each other in the unlensed ("source") plane
 - Multiple images of the background appear

NASA, ESA, K. Sharon (Tel Aviv University) and E. Ofek (Caltech)

Weak Lensing

- Occurs when the foreground and background galaxies are far away (or foreground galaxy is not very massive)
 - Images are distorted, but only one per galaxy

Lensing at home

You can even simulate gravitational lensing at home
 Only need two things:

Source Galaxy

Lensing Galaxy

Wine-glass lensing Double Image Lens

Wine-glass lensing (Merging) Quad Lens

Wine-glass lensing Einstein Ring

Cluster Lenses

Galaxy clusters can also act as gravitational lenses

Increased total mass ($10^{15} M_{sol} vs 10^{12} M_{sol}$) makes them more efficient deflectors

Science with lensing

Recall:

• Dependent on two main factors:

- -Geometry
- -Mass

Accurate **redshifts** are crucial for quantitative analysis

Spectroscopy

• Spectroscopic data is valuable, but can be hard to obtain

Example: the "classic" way

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) • STScl-PRC00-08

Enter the IFU

- The Integral Field Unit (IFU): a new type of spectrograph
 - Creates "spectral images" of objects simultaneously
 - thousands of spectra in one exposure
 - Ancillary data included for free

MUSE is leading the way

Vital Statistics

Name:	MUSE
Category: integral field spectrograph	
Size:	2 1x1 arcmin
Spatial sampling: 0.2"	
Image Quality	: <0.2"
Coverage:	4650-9300 Å
Resolution:	1500-3500
Throughput:	35% end-to-end

How does it work?

- Cut the field of view into slices
- Each slice is like an individual long slit

• Disperse the light through a disperser (prism)

 Capture the light with a (CCD) detector

The Result

 3D (2 spatial + 1 specral) information of the object

- Emission line regions clearly shown
 - along with kinematic information

Census of the HDFS Field

Extremely efficient redshift machine

- 18 Previously-Known
 Spectroscopic Redshifts
- 189 sources identified in MUSE data cube
- 8 stars
- 7 nearby galaxies
- 61 [OII] 3727 emitters
- 10 absorption lines galaxies
- 12 CIII] 1909 emitters
- 2 AGNs
- 89 Lya emitters

Bacon et al., 2015

Needles in the haystack ...

IFUs are also able to detect "blind" emission lines from continuum-free sources

Combining Lensing + MUSE

Lenses, IFUs both open windows into high-resolution science Many studies take advantage of both

- Some examples include:
 - Cluster mass modeling
 - Resolved spectral properties of galaxies
 - Epoch of Reionization (Ly-α emitters)
 - Cosmology

And now, a whirlwind tour...

Mass Modeling

Mass modeling Abell 370

Lensed galaxies act as constraints for mass models

> Richard et al. 2010 Lagattuta et al. 2017

Mass modeling

Lensed galaxies act as constraints for mass models

22 multiply-imaged systems discovered in A370 (so far)

17 with MUSE redshifts

Mass modeling

Lensed galaxies act as constraints for mass models

22 multiply-imaged systems discovered in A370 (so far)

17 with MUSE redshifts

Mass modeling

Lensed galaxies act as constraints for mass models

22 multiply-imaged systems discovered in A370 (so far)

17 with MUSE redshifts

Best-fit model favors a new "crown" mass clump separate from BCGs

Mass ModelingAlso used in other clusters

Abell 2744

MACS 0416

Jauzac et al. 2015 Mahler et al. 2018

Caminha et al. 2017

Resolved Properties of Galaxies

Resolved Properties

- Some galaxies exhibit "extreme" magnifications
 - Typically when galaxy falls close to a lensing critical curve
- This opens a high resolution window to study stellar/gas properties
 - Ideal case for IFU spectroscopy

Giant arcs

• Many other arc systems found throughout GTO and GO datasets

Patricio et al. 2018

Giant arcs

Patricio et al. 2018

Giant arcs

 Line ratios and/or Equivalent Widths trace star formation rate (SFR)

 Also informs on metallicity, stellar age, IMF, etc...

 Possible thanks to stellar population modeling codes

Ly-α Arcs

Lagattuta et al. (2018)

• Not just "naked eye" arcs...Ly-a can also be found in "blind" mode

Velocity gradient perpendicular to stretching axis

Lyman-α and Reionization

UV Luminosity Function

Abell 1689

Detect Ly- α galaxies (2.9 < z < 6.7) in a • field, quantify brightness and construct a luminosity function

Bina et al. 2015

Accounting for Lensing

Hubble/MUSE UDF Drake et al. 2017 BoRG Survey Mason et al. 2015

 Must account for volume/bias effects that are altered due to lensing magnification

Individual Reionizers

Hernan-Caballero et al. 2017

- Faint-end (low Equivalent Width) Lyman-α emitters easier to see due to lensing magnification boost
- These objects thought to be more efficient at re-ionizing their local environments

Cosmology

Supernova Refsdal

Data (Kelly et al. 2015)

Model+Prediction (Jauzac et al. 2016)

• First detection of multiply-imaged (well separated) Supernova

- Counterimage of galaxy provided test case for lens models
 - Also constrains value of H_0

Cosmology with Supernovae

Advanced spectroscopic data used to construct the most accurate lens models

These models are used to estimate cosmological parameters

Grillo et al. 2018

The search for more

Additional lensed SN will improve statistics and reduce systematic error

- Search ongoing in Frontier Fields and other clusters

Conclusions

• Gravitational lensing offers a unique look into the faint and distant universe

• IFUs (like MUSE) are a natural complement

Research involving both is active and ongoing
 And there is still room to expand