RADIO VIEW ON AGN

Preeti Kharb

National Centre for Radio Astrophysics - Tata Institute of Fundamental Research

AGN

- Seyfert (1943): Starlike nuclei + peculiar emission-line spectra in spirals (NGC 1068, NGC 4151)
- Baade & Minkowski
 (1954): Cygnus A radio
 source has Seyfert-like
 spectra
- Schmidt (1963): Quasar 3C 273 at z=0.158 discovered

The AGN zoo: list of AGN classes.

Class/Acronym	Meaning	Main properties/reference
Quasar	Quasi-stellar radio source (originally)	Radio detection no longer required
Sey1	Seyfert 1	$FWHM \gtrsim 1,000 \text{ km s}^{-1}$
Sey2	Seyfert 2	$FWHM \leq 1,000 \text{ km s}^{-1}$
QSO	Quasi-stellar object	Quasar-like, non-radio source
QSO2	Quasi-stellar object 2	High power Sey2
RQ AGN	Radio-quiet AGN	see ref. 1
RL AGN	Radio-loud AGN	see ref. 1
Jetted AGN		with strong relativistic jets; see ref. 1
Non-jetted AGN		without strong relativistic jets; see ref. 1
Type 1		Sey1 and quasars
Type 2		Sey2 and QSO2
FRI	Fanaroff-Riley class I radio source	radio core-brightened (ref. 2)
FR II	Fanaroff-Riley class II radio source	radio edge-brightened (ref. 2)
BL Lac	BL Lacertae object	see ref. 3
Blazar	BL Lac and quasar	BL Lacs and FSRQs
BAL	Broad absorption line (quasar)	ref. 4
BLO	Broad-line object	FWHM $\gtrsim 1,000 \text{ km s}^{-1}$
BLAGN	Broad-line AGN	FWHM $\gtrsim 1,000 \text{ km s}^{-1}$
BLRG	Broad-line radio galaxy	RL Sey1
CDQ	Core-dominated quasar	RL AGN, $f_{\text{core}} \ge f_{\text{ext}}$ (same as FSRQ)
CSS	Compact steep spectrum radio source	core dominated, $\alpha_r > 0.5$
СТ	Compton-thick	$N_{\rm H} \ge 1.5 \times 10^{24} {\rm ~cm^{-2}}$
FR 0	Fanaroff-Riley class 0 radio source	ref. 5
FSRQ	Flat-spectrum radio quasar	RL AGN, $\alpha_r \le 0.5$
GPS	Gigahertz-peaked radio source	see ref. 6
HBL/HSP	High-energy cutoff BL Lac/blazar	$v_{\text{synch peak}} \ge 10^{15} \text{ Hz} (\text{ref. 7})$
HEG	High-excitation galaxy	ref. 8
HPQ	High polarization quasar	$P_{\text{opt}} \ge 3\%$ (same as FSRQ)
Jet-mode		$L_{\rm kin} \gg L_{\rm rad}$ (same as LERG); see ref. 9
IBL/ISP	Intermediate-energy cutoff BL Lac/blazar	$10^{14} \le v_{\text{synch peak}} \le 10^{15} \text{ Hz (ref. 7)}$
LINER	Low-ionization nuclear emission-line regions	see ref. 9
LLAGN	Low-luminosity AGN	see ref. 10
LBL/LSP	Low-energy cutoff BL Lac/blazar	$v_{\text{synch peak}} < 10^{14} \text{ Hz} (\text{ref. 7})$
LDQ	Lobe-dominated quasar	RL AGN, $f_{\rm core} < f_{\rm ext}$
LEG	Low-excitation galaxy	ref. 8
LPQ	Low polarization quasar	$P_{\rm opt} < 3\%$
NLAGN	Narrow-line AGN	$FWHM \lesssim 1,000 \text{ km s}^{-1}$
NLRG	Narrow-line radio galaxy	RL Sey2
NLS1	Narrow-line Seyfert 1	ref. 11
OVV	Optically violently variable (quasar)	(same as FSRQ)
Population A		ref. 12
Population B		ref. 12
Radiative-mode		Seyferts and quasars; see ref. 9
RBL	Radio-selected BL Lac	BL Lac selected in the radio band
Sey1.5	Seyfert 1.5	ref. 13
Sey1.8	Seyfert 1.8	ref. 13
Sey1.9	Seyfert 1.9	ref. 13
SSRQ	Steep-spectrum radio quasar	RL AGN, $\alpha_{\rm r} > 0.5$
USS	Ultra-steep spectrum source	RL AGN, $\alpha_{\rm r} > 1.0$
XBL	X-ray-selected BL Lac	BL Lac selected in the X-ray band
XBONG	X-ray bright optically normal galaxy	AGN only in the X-ray band/weak lined AGN

Padovani+ 2017, A&A Review

THE RL-RQ DICHOTOMY

Palomar Bright Quasar Survey Kellermann+ 1989

Radio-loud / Radio-quiet AGN $\mathbf{R} = S_{5 \text{ GHz}}/S_{\text{B-band}} \ge 10$

Bimodality observed

Quasars $M_B < -23$ "AGNs" $M_B > -23$

~15% sources "radio-loud"

<u>Jetted (<1%) versus Non-jetted</u> (Padovani+ 2017, A&A Review)

RADIO EMISSION IN AGN

Seyfert galaxy NGC1068

Radio galaxy 3C31

Radio-Loud AGN typically reside in elliptical galaxies, Radio-Quiet AGN typically in spiral galaxies

AGN MODEL

Supermassive black hole (SMBH) ~10⁶-10⁹ M

Broad-line region (BLR) line widths ~1000 - 10,000 km/s, $n_e > 10^9$ cm⁻³

Narrow-line region (NLR) line widths $\leq 500 \text{ km/s}, n_e \sim 10^3 \text{ cm}^{-3}$

Dusty torus shields the BLR from some lines of sight

Jets launched from Accretion disk-SMBH interface

Type 1s & 2s differ by orientation

Unification (Antonucci 1993)

Padovani+ 2017, A&A Review

RADIO-LOUD AGN: FANAROFF-RILEY DICHOTOMY

Fanaroff-Riley type I (FRI) & type II (FRII)

 $L_{178} \approx 2 \times 10^{25} \text{ W/Hz}$ (Fanaroff & Riley, 1974)

Break depends on host galaxy magnitude (Owen & Ledlow, 1994)

Hybrid radio morphology sources (Gopal-Krishna & Wiita, 2000)

RADIO-LOUD UNIFICATION

- Pole-on FRIs = BL Lac objects
- Pole-on FRIIs = Quasars

(Urry & Padovani 1995)

- Formation, collimation and propagation of jets ?
- Jet composition ?
- Jet stability: is there a large-scale magnetic field ?
- Interaction with the surrounding medium ?

JET FORMATION IN AGN

Blandford & Znajek (1977)

Energy & angular momentum extraction from a spinning black hole.

Strong poloidal magnetic field needed

Power extracted is proportional to $B^2 \& \omega^2$

B = magnetic field strength $\omega = angular velocity$

VERY LONG BASELINE INTERFEROMETRY (VLBI)

- Widely separated antennas not connected by cables (Unlike VLA, GMRT)
- Data recorded on magnetic tapes
- Recorded data is time-stamped by atomic clocks (e.g., hydrogen maser)
- Later, the tapes are played back with accurate time-stamps and correlated in a central location

VLBI POLARIZATION

Synchrotron emission is highly linearly polarized (as much as 75% for optically thin radio emission and highly ordered magnetic field)

Electric vectors (χ) - Plane of polarisation

Magnetic field orientation is perpendicular to χ vectors for optically thin emission

"Spine-Sheath" (Marscher+ 2002, Gabuzda 2003)

Helical magnetic fields (Lyutikov+ 2005)

ROTATION MEASURE GRADIENTS

3C78 – VLBI @ 5, 8, 15 GHz (Kharb+ 2009)

3C120 – VLBA @ 15, 22, 43 GHz (Gómez+ 2008)

$$\mathbf{RM} = \frac{e^3}{2\pi m_e^2 c^4} \int_L n_e \boldsymbol{B} \cdot \boldsymbol{ds}$$

 $\chi(\lambda^2) = \chi_0 + \lambda^2 RM,$

Signature of helical magnetic fields wrapping the jets (Blandford 1993)

Monitoring of Jets in AGN with VLBA Experiments (MOJAVE)

>50% of MOJAVE BL Lacs have "hot spots" like FRIIs

RELATING THE PC-SCALE TO THE KPC-SCALE

JET DIRECTION CHANGES

X-shaped, Z-shaped Radio Galaxies Jet Realignment due to Binary Black Holes?

NGC 7674

- Seyfert 2 at z=0.0289
- Z-shaped 0.7 kpc radio jet with the VLA (Momjian+ 2003)
- Core not detected at 1.4 GHz

NGC 7674

- VLBA at 2, 5, 8, 15 GHz
- $T_B > 5 \ge 10^6$ K. Inverted spectral indices.
- Core projected separation = 0.65 mas = 0.35 parsec. *Closest SMBH binary!*

Kharb, Lal & Merritt 2017, Nature Astronomy

KILOPARSEC RADIO STRUCTURES

- Systematic studies w/ VLA and Westerbork at 5 & 1.4 GHz
- Diffuse radio emission by starburst-driven winds (Wilson 1988; Baum+ 1993)
- Colbert et al. 1996 suggested AGN-driven based on nonspherical morphology and skewed orientations w.r.t.
 galactic disks

UGC 3695: FRI radio galaxy with lowest "**R**" in sample of Seyferts & FRIs (Kharb+ 2014)

Radio Lobe Extent ≥ 10 kpc, E-So galaxy

EPISODIC ACTIVITY

- Giant radio galaxies ≈1 Mpc
- Double-double radio galaxies
- AGN activity is episodic
- "Relic" steep-spectrum (synchrotron ageing) lobes

RELIC LOBES

- Seyfert 1 NGC 4235: GMRT 325 610 MHz spectral index, Lobe: -0.6+/-0.2, Relic: -1.8+/-0.2 (Kharb+ 2016)
- Myers & Spangler (1985) formalism: Relic lobe 2 times older

Jetted Seyfert galaxy Mrk 6

1.4 & 5 GHz - VLA A, B, C, D arrays

North-South ~12 kpc, East-West ~3 kpc, N-S ~1 kpc jet

SFR ~33 M_☉/yr required (Kharb+ 2006)

Herschel (L250 μ m) SFR < 0.8 M $_{\odot}$ /yr (Kharb+ 2014)

Eddington rates = $\lambda = L_{bol}/L_{Edd}$

A diagram of the central engine of LLAGNs, consisting of three components: an inner, radiatively inefficient accretion flow (RIAF); an outer, truncated thin disk; and a jet or outflow. (Courtesy of S. Ho.)

when λ <0.01 Radiatively Inefficient Accretion Flow else "standard" geometrically thin, optical thick disk

Padovani+ 2017, A&A Review

$$L_{\rm Edd} = \frac{4\pi G M m_{\rm p} c}{\sigma_{\rm T}}$$
$$\cong 1.26 \times 10^{31} \left(\frac{M}{M_{\odot}}\right) W = 3.2 \times 10^4 \left(\frac{M}{M_{\odot}}\right) L_{\odot}$$

SUMMARY

- Magnetic fields (helical?) instrumental in jet launching, collimation, propagation
- Role of environment unsettled; also Jet composition
- Continuum in properties between FRIIs and FRIs
- Continuum in properties between FRIs and Jetted Seyferts/LINERs
- AGN classification may depend only on a few parameters: Orientation, Accretionrate, Presence (or absence) of strong jets, Host galaxy and its environment
- SKA with large frequency coverage (50 MHz 20 GHz) and nanoJy sensitivity will revolutionize the study of Radio AGN