MULTIWAVELENGTH VIEW ON AGNS

A R Rao Tata Institute of Fundamental Research, India 2018 Feb 16

Franco-Indian School: From Re-ionization to Large Scale Structure- A Multiwavlength Approach 11 - 17 February 2018, IUCAA, Pune- INDIA

PLAN

- ► Active Galactic Nuclei
 - different types
 - Seyfert galaxies
 - multiwavelength emission
- ► AstroSat
 - Instruments
 - Special features
- AstroSat results
 - NGC 4151, NGC 4051...
 - RE J1034+396

ACTIVE GALACTIC NUCLEI

M 100 (17 Mpc)

NGC 6814 (23 Mpc)

Hubble pictures 3C 273 (749 Mpc)

- . Carl Seyfert (1943): strange emission line galaxies (non-stellar radiation)
- Very luminous core : rapid variability. —> small size
- Radio: Jets / lobes
- X-rays: Stellar mass black holes; Variability in AGN

Table 1 The AGN zoo: list of AGN classes

Class/Actorym	Meaning	
Quar	Quasi-stellar radio source (originally)	
Soyl	Seyfert 1	
Sey2	Seylert 2	
Q\$0	Quasi-staffar object	
Q\$02	Quasi-stellar object 2	
RQ AGN	Radio-quiet AGN	
RL AGN	Radio-fond AGN	
Jened AGN		
Non-jetted AGN		
Type 1		
Type 2		
FRE	Fanaroff-Riley class I radio source	
FR II	Fanaroff-Riley class II radio source	
BL Loc	BL Lacertae object	
Blacor	BL Lac and quasar	
BAL	Broad absorption line (quasar)	
BLO	Broad-line object	
BLAGN	Broad-line AGN	
BLRG	Broad-line radio galaxy	
CDQ	Core-dominated quasar	
CSS	Compact steep spectrum radio source	
CT	Compton-thick	
FR 0	Fanoroff-Biley closs 0 radio source	
PSRQ	Plat-spectrum radio quasar	
GPS	Gigabertz-peaked radio source	
HBL/HSP	High-energy cutoff BL Lac/blazar	
THDG	High-excitation galaxy	
HPQ	High polarization quasar	
Jet-mode		
IBL/ISP	Internediate-energy cutoff BL Lac/blazar	
LINER	Low-ionization nuclear emission-line regions	
LLAGN	Low-huminosity AGN	
LBL/LSP	Low-energy cutoff BL Lac/blazor	
LDQ	Lobe-dominated quasar	
LBG	Low-excitation galaxy	
LPQ	Low polarization quasar	
NLAGN	Namow-law AGN	
NLRG	Narrow-line radio galaxy	
NLSI	Namow-lase Seytert 1	
OVV	Optically violently variable (quasar)	
Population A		
Population IS		
Radiative-mode	Reading and and Read and Read	
RESE.	Radio science BL Lac	
Sey1.5	Seylet 1.5	
Soyl.8	Seylett 1.5 Sector 1.0	
SUN LO	Stephen 1.5	
55802	steep-spectrum ranto quitant	
201	X recordered B. Lee	
XBOM/1	V ray bright online he normal advan-	-
COMPANY THE	second configuration and accurate function	Unc

AGN TYPES

► Seyferts. (type 1 and 2)

- ► Quasars/ QSOs
- ► RQ/ RL AGN
- ► FR I, II
- ► BL Lac/ Blazar

Padovani+ 2017

AGN MASSES

- ► Reverberation technique
- ► Gas dynamics

Eddington Luminosity

Gravity $dP/dr = -\rho g = -GM\rho/r^2$

Luminosity dP/dr = -($\sigma_T \rho/m_p c$) (L/4 πr^2)

 σ_{T} = Thomson Cross section

- $L_{Edd} = 4\pi GMm_p c/\sigma_T$
 - $= 3.3 \times 10^4 L_{\odot}(M/M_{\odot})$

Standard Disk:

T ~ M^{-1/4} 1 keV for 1 M_{\odot} and a few eV 10⁸ M_{\odot}

- Massive AGN brighter than the galaxy
- Stellar mass BH: high energy electrons; AGN: atomic physics
- 15% AGN jetted superluminal motion
- Seen along the jet the brightest objects

EMISSION LINES

AGN: The Working Paradigm

AGN STUDIES

- Inner-most accretion disk: structure
- ► Jet launching mechanism
- ► Role of spin
- Disk-jet connection
- ► Jet dynamics

AstroSat

- Large Area X-ray Proportional Counter (LAXPC)
- Soft X-ray Telescope (SXT)
- Cadmium Zinc Telluride Imager (CZTI)
- Ultra-Violet Imaging Telescope (UVIT)
- Sky Survey Monitor (SSM)
- Charge Particle Monitor (CPM)

Detector	Photon-counting (Intensified) CMOS imagers	
Optics	Twin Ritchie Chretian 2 mirror system	61
Bandwidth	130-180 nm 200-300 nm 320-550 nm	5/
Angular Resolution	1.8 arc sec	

Detector	X-Ray CCD at the focal plane
Optics	Conical foil (Wolter-I) Mirrors
Bandwidth	0.3 - 8 keV
Energy Resolution	2.34% @ 5.9 keV
Angular Resolution	2 arc min (HPD)

AstroSat

Resolution

	Detector	Proportional counter
	Optics	Collimator
	Bandwidth	3 - 80 keV
	Energy Resolution	12% @ 22 keV
	Time resolution	10 microsec
	Effective area	8000 cm2
CZT		

Detector	CdZnTe Detector	
Optics	2-D coded Mask	
Bandwidth	15 - 100 keV	
Energy Resolution	6% @100 keV	
Time resolution	20 microsec 12	

Participating Institutes...

ISRO Centers

Satellite, rocket, T&E, Launch, Orbit, SSM, Level 1&2 software + overall management Research Institutes **Tata Institute of Fundamental Research** LAXPC, CZTI, SXT Indian Institute of Astrophysics UVIT **IUCAA SSM, CZTI RRI LAXPC** PRL, Universities, Leicester Uty (SXT), Canadian Space Agency

AstroSat

- IRS (Indian Remote Sensing) Clas
- Launch PSLV C30 from SHAR
- Altitude : 650 km.
- Inclination : 6 deg.
- Mass 1550 kg. (780 kg. Payloads)
- Power : 2200 watts
- 200 Gb (210 Mb/sec)
- Satellite Positioning System for orbit and time data
- Payload pointing (3σ): 0.05 degree
- Slew rate : 0.6 deg/sec
- Launch: 2015 September 28
- Operational life > 5 years

LAXPC: Large area Xenon-filled Proportional Counters

Energy range : 3 – 80 keV

Time Resolution: 10 µsec

Area

: 6000 cm² (7980)

 $E / \Delta E \sim 3 - 7$

Three identical xenon filled proportional counters. Multi layer and multi cell geometry with 60 anode cells and 28 anti cells

Xenon + methane mixture at a pressure 1500 mm of Hg.

50 micron thick aluminized Mylar window with a FOV of 1°x1°

LAXPC Effective Area

Soft X-ray Telescope

40 shells (130 - 260 mm dia)

•Thin Optical Blocking Filter

•CCD Assy. including TEC

•PCB with frontend electronics

• Four Fe-55 corner sources for calibration

SXT- Focal Plane Camera Assy

Modified from Swift; Using spare MOS CCD22 from XMM: 600 x 600 pix, 40 microns

04/10/1/

SXT: Optics — Replicated Thin foil mirrors made in TIFR (following Suzaku)

Mirror roughness 7 – 10 Angstroms : Exp. Ast. (2011)28,11

CCD: X-ray illumination

CCD: Optical illumination

Mn K_α, K_β 145 eV

resn.

4×

S×10¹

2×10%

10:-

ວ∟ 5

CZT-Imager Weight - 50 kg Size: 60 cm

Lov (2000 kg; 500 cm; 25.6°) Swift (1500 kg; 560 cm; 20°)

Low Inclination 6°

Continuous time-tagged individual photon data (20 micro-sec)

Scanning Sky **Monitor (SSM)**

3 PSPC •

•

Area 60 cm² (5 keV) •

Ang res. : 2.5° & 12^{**} • Res 20% @ 6 keV

Energy in keV

Ultraviolet Imaging Telescope (UVIT)

Slide courtesy: Swarna Ghosh

Comparison of UVIT with GALEX (#1 of 2)

parameter	GALEX	UVIT	
No. of telescopes	1	2	

RC, f/6 RC, f/12; RC, f/12 Telescope optics Primary Mirror size (dia) 50 cm 38 cm, 38 cm FoV (Circular dia) 75 arc-min 28 arc-min

2 3 channels No. of bands (Far-UV = FUV FUV (125-180 nm) Near-UV=NUV) NUV (180-300 nm)Visible=VIS (320-550 nm)

Filters in FUV 1 fixed band 4 filters Filters in NUV 1 fixed band 5 filters Filters in VIS

5 filters

Slide courtesy: Swarna Ghosh

Comparison of UVIT with GALEX (#2 of 2)

para	meter	GALEX	UVIT
Slitle Spect No. o	ss Spectroscopy wi ral Resolution f grism/grating	th Grism R ~ 100-200 1 per band	Grating R ~ 100-200 2 per band (orthogonal pair)
Angul	ar resolution(FWH	M) 4.5-6.0 arc-	-sec < 1.8 arc-sec
Peak	Effective area	FUV : 37 cm ² NUV : 62 cm ²	FUV : ~15 cm ² NUV : ~50 cm ² VIS : 50 cm ²
Satur	ation (m _{AB})	< 10 mag	< 8.0 mag (with ND filter)
Time	resolution	~ 10 milli-sec	< 5 milli-sec

VAN	

RXTE PCA

Energy range	2 – 60 keV
Energy resolution	< 18% (6 keV)
Effective area	6500 cm ² *
FOV & Resolution	1 deg ²
Time resolution	1 microsec
Sensitivity	0.1 mCrab
	Energy range Energy resolution Effective area FOV & Resolution Time resolution Sensitivity

SSM		RXTE ASM
2.5 – 10 keV	Energy range	2 – 10 keV
25% (6 keV)	Energy resolution	3 bands
53 cm ² (5 keV)	Effective area	90 cm ² (geometric)
10° × 90° (3' × 12')	FOV & Resolution	6° × 90° (3' × 15')
80% sky / 90 min	Time coverage	80% sky / 90 min
28 mCrab	Sensitivity	30 mCrab

SXT

0.3 – 8 keV	Energy range	0.2 – 10 keV
5 – 6% (1.5 keV)	Energy resolution	~ 8% (1/5 keV)
128 cm2 (1.5 keV)	Effective area	110 cm2 (1.5 keV)
40' (2')	FOV & Resolution	23.6' (18")
2.4s, 0.3s	Time resolution	2.5, 2.2 ms (WT)
10 ⁻¹³ (5σ, 20ks)	Sensitivity	2 × 10 ⁻¹⁴ (10ks)
UVIT		Swift UVOT
130 – 550 nm	Energy range	170 – 650 nm

130 – 550 nm	Energy range	170 – 650 nm
13 (220 – 430 nm)	Filters	6 (212 – 543 nm)
FUV, NUV	Grisms	UV (>170nm), V
8 – 50 cm ²	Effective area	15 – 50 cm ²
28' (1.8" UV, 2.2" V)	FOV & Resolution	17' (2.5" at 350 nm)
20 mag (130-180 nm)	Sensitivity (50, 200s)	19.4 mag (UVW2)

20 – 200 keV	Energy range	15 – 150 keV
Photon counting	Operation	Survey mode (coadd) / Burst mode (photon counting)
1000 cm ²	Effective area	5200 cm ²
36 sq deg (8')	FOV & Resolution	4600 sq deg (17')
1 msec	Time resolution	5 sec / 0.1 msec
0.5 mCrab	Sensitivity (3o, 1ks)	~40 mCrab

Astrosat Advantages:

• Low Inclination

- Continuous time-tagged data (LAXPC, CZTI & SSM) - micro-seconds
- Bright source observing capability of SXT
- Facility to adjust SSM observation time
- Hard X-ray (above ~ 80 keV) monitoring

The first year of AstroSat

- Six months PV phase
- Six months GT
- 30 Ms
 Efficiency :
 ~10% (UVIT) to
 - ~ 55% (CZTI)
- 140 sources, 337 targets

AGN SED & Astrosat coverage

UV/X-ray emission from RQ AGN

- Optical/UV emission not well described by the standard disk model.
- Many AGN accrete at high accretion rates.
- Is the assumption of standard SS accretion disk correct?

MW emission from type 1 AGN AstroSat observations

- Fairall 9 : Bright Seyfert 1 (2-10 keV flux ~2e-11 cgs, V=13.8)
 - No intrinsic X-ray absorbption

- AstroSat MW observations (G06_157)
 - 30ks (SXT as primary inst)

Fairall 9 : SXT Data

Net exposure : 25.8ks, source : 0.46 counts/s

Energy (keV)

Simple absorbed powerlaw model

Fairall 9: SXT+LAXPC data

 Net LAXPC10 exposure : 52.7ks, source : 2 counts/s (3-15 keV, LAXPC1)

Fairall 9: UVIT observations

NUV Grating exposure : 6000s

Sriram, UVIT POC

Fairall 9: SXT+LAXPC+NUV grating data

Excess NUV emission

Fairall 9: SXT+LAXPC+NUV+FUV grating data

Excess NUV emission

NGC4151 : AstroSat SXT/LAXPC broadband continuum

data and folded model

gulabd 20-Jan-2017 07:24

NGC4151 : spectral model

... keV² (l'hotons cm⁻² s⁻¹ keV⁻¹) 0.01 10Energy (keV)

Unfolded Spectrum

Model : wabs*pcfabs(pexrav+gauss)

 $\Gamma \sim 1.7$ $R \sim 1$ $E_{cut} = 62 - 72 keV$

UVIT observations of NGC4151

PI: K. P. Singh

Lightcurves provided by Stalin/Prajwal

UV/X-ray varibility SXT observations of low BH mass AGN NGC4051 NGC4593

PI: K. P. Singh (SXT GT)

PI: D. Bhattacharya (CZTI PV)

NGC4151: SXT+LAXPC spectrum

Reduced $chi^2 = 1.3$

NGC4151 FUV BaF2/F154W (G06-III)

NGC4151 G06-III NUV B15/N219M

Short-term

¢

. .

series seine seine seine seine seine seine seine seine seine

Marginal evidence for declining FUV and NUV flux

NGC4051 (1.7 days)

NGC4593 (~4 days)

UV Variability in NGC4593 dominated by X-ray reprocessing

RE J1034+396

Big Blue Bump (BBB)(Puchnarewicz et al., 1995, 1998): 0.1-2.4 keV spectrum with ROSAT (PSPC) at high temperature ($kT \sim 100 \text{ eV}$) whose high energy turnover is observed in soft X-rays at 0.4 keV

Spectral Energy Distribution (SED)(Done et al., 2012):

- A black body from the disk (representing the BBB)
- A hard coronal component (power law at high energies)
- A low temperature high optical depth Comptonization of the disc emission in the soft X-ray region.

Quasi-Periodic Oscillations (QPO)(Gierliński et al., 2008; Middleton et al., 2009, 2011): 91 ks XMM-Newton data showed a significant QPO at $\nu =$ 2.7 ×10⁻⁴ Hz, period ~ 1h

Swift XRT

POWER SPECTRAL DENSITY: AGN AND XRB McHardy et al. 2006

GRS 1915+105

RE J1034+396: wide band PSD

Similar to HFQPO

Mass of the BH can be measured

10⁶ M 3 \succ

RE J1034+396

RE J1034+396 & GRS 1915+105

Conclusions

- AstroSat instruments are working very well.
- Wide band multiwavelength (UV to hard X-rays) observations in a single platform for nearby bright AGN.
- Structure of inner accretion disk.
- ► Spin measurements.
- Disk jet coupling